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FOREWORD

This report was prepared by the McDonnell Douglas Corp. for the Aero-Acoustics
Branch, Vehicle Dynamics Division, Air Force-Flight Dynamics Laboratory, Wright-Patterson
Air Force Base, Ohio, under Contract F33615-71-C-1217. This research program was con-
ducted under Project 4437 “High Intensity Sound Environment Simulation for Air Force
Systems Testing”, Task 443703 “Development-of Acoustic Testing Techniques for Aircraft
Components and Equipment”. The Air Force Project Engineer was Mr. N. D. Wolf. This
study was performed during the period March 1971 to December 1972,
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Technical Report, and assigned the McDonnell Douglas number MDC A1622.
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ABSTRACT

Sonic fatigue testing at elevated temperatures has become increasingly important as
aerospace vehicle structures are designed for the combined environments. Work is described
in four aress related to thermal/acoustic testing: acoustic simulation, thermal simulation,
specimen mounting effects, and instrumentation and measurements.

Acoustic field studies considered the directional properties of various fields, as well as
coupling - ” the acoustic fields with structural specimens. Thermal environment studies den't
with predicting temperatures in a heated structural specimen. The design of heating systems
was also discussed. In specimen mounting effects, equations were presented to show how
therinal loads enter into the general dynamic equations. Panels with free edges and panels with
fixed edges were treated in detail, Measurement methods related to scuic fatigue testing at
elcvated temperatures were surveyed for availability of devices which operate in the combined
environment.

Results presented here indicate that good estimates of specimen response can be made
for basic specimen geometries, mounting conditions, and orientations in the excitation field.
Methods are suggested for exiending the results to more complex cases.
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SECTION 1
INTRODUCTION

Sonic fatigue testing at elevated temperatures has become a matter of considerable
importance in recent years. The application of new materials and advanced fabrication
methods to high performance aircraft has brought a need for evaluation of the structural
elements in the combined high intensity noise/high temperature environment.

The study effort reported here considered all aspects of high temperature sonic
fatigue testing, Characteristics of the acoustic environment are discussed, along with coup-
ling of the acoustic excitation with the test specimen. Thermally and dynam:cally induced
stresses are considered in detail, including the effect of the specimen mounting on the
resultant specimca response. Information is reported on methods and devices for measuring
ali the y~rameters that enter into combined ther_mal/acoustic testing.

itk dtpan SRaAS A b bty

Following a brief summary of the above findings, recommendations are made for
applicatio:s to combined environment tests, and areas for further study are indicated.
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SECIION 2 ‘
ACOUSTIC ENVIRONMENT SIMULATION

Sonic fatigue tests are usually conducted in facilities that produce either progressive
wave or reverberant (diffuse) acoustic fields. One phase of this program was to investigate
the use of such facilities for sonic fatigue tests at elevatec temperatures. Since the purpose
of a sonic fatigue test is to determirie the ability of a structural specimen to withstand acous
tically induced stresses, a stidy of acoustic environment simulation should alsc \.O!‘S‘d"" tm

coupling between the acoustic field and ths’ specxmen Accordingly, this section st con-o 5 -
siders mathematical representations for progressive waveand reverberant f5elds. Ti‘cn, atk:.r

ing the dynamic properties of a structural specimen, & method is developea for e;tlmatmg
the response of a structure to an acoustic ficld, The effects of temperature on the-gcoust
field in a representative test application are then mscussed e

2.1 ACOUSTIC FIELDS R

The analysis of the progressive wave and reverbera n* ﬁulas foilow« th" usual ass»fﬂp- .
tions of clementary acoustics. The sound pressure ang: partlcie velocities are assumed 3o bs
small compared to the static pressure and sound veiouty,wspwt(wly Attenuat\on in rhe
medium will be neglected < T

.;.',0

2.1.1 Progressive Wave Fleidf; -
A commonly used sunic fatigue test eiclosure is the progressive. wavc "ube consxstmg
of a constant cross-section duct with an acoustic source at one-end, and snme provmun
for mounting a structural specimen in the walf of the duct. The acousnc pu,w,sures in suc h '
an enclosure are considered to be uniform across any cross-secticm-se thatthe’ progrmsn
wave field'is a oxw-dxmermonal acousm field.! Therefore, the one-d'mcnslonal-wa"r :
equation '

(N

5 Sl TE <,g\_.
oy L 2R S Ty
T S 2 o0 A

on the boundary conditions at the end of the enclosure. For the arrangemerit-shown in
Figure | for example, the sotution fora pel fectly ancchow termination (1 e, no prt&'wn
wave reflected from the end) is of the form -

(oot + 20X e
o0, 020 I 22).

a pressure wave traveling in the —x direction. The pressure amplitude envelope is equat to
P, and is constant along the length of the tube, while the phase of the pressure- beLWeun
two points varies linearly with the distance between these points.

Other types of terminations will yield different pressure functions for the progressive
wave enclosure. If the anechoic termination were replaced by an infinitely rigid closure at
the x=0 plane, then a pressure wavc is reflected back toward the sourcz, and the preSSure
in the enclosure is given by2

Po : 21X

27X et )y
o ko cOs \ e {2.3) -

p(x, t)=

21X N

This solution is for a simple harmonic excitation at an angular {requency @ and: ie presents =

can be used to describe the progressive wave field. The ‘solution of equatlon 2. l) deper\do_"
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x.o;e that the Pmdoye of :

L he messure em'r‘iope 54 “unctxon of the leng\}‘ ol the enciosur; SZ and th., frtuqucmy at .
whn,h €h«f tesl se saon is excited. The iruwcncy dtpendcnce is contamed in the wave

B (2.4)

Fquatxon (2. ?} does nut comuier .m\- lo:)sas and the ‘refure suggusts that the pressure be-
~comes mim:te 2t ﬁrequem:fes dnd enciosme Icngfh sz.;gh bt at”

K‘Z nw,n _,!.&,3,,..

In pmv;bce, some dampmg

(2.3}

is azways prcscnt to hmu t‘xq pre%ure to a fxmte value, aTthough

thc standliay  WaVe'T ano isa mdxumm when ‘the chdxttons of ex{uatlon (2.5) are met.

S A t}urd'farm of’ the pressure funct*ou results if the.enc josure is silowed to open
dxrect:y into free space at the k=0 plane. In t*us ase, there will be a pressure antinode at
the inter Id(.,e witii the pressure dmr;bumon in the du " bemg

.'P‘(')‘

p(x D=

R cosk®

(2.6}

Nomments t’nlanve ‘to-the peak miue ot pressure for the rigid termination case are also
apphcable to the umloazﬁe with an upm cnd e,x epl that pressure maxima oceur at

e = =135 " E @)

Tlfhe simplc'trigonorﬁetriy functions in equations (2.2}, (2.3), and (2.6) ake convenient
- to describe the pressure distributions in progressive wave test sections, since the test speci-
“mietss are mounted in the wall of the test scction. The frequency range encompassed by
sonic fatigue tests, combined with the cross-sectional areas likely to be used for progrt,ssxve
- wave sections, may yicld conditions such that the acoustic waves do not travel along the
- mclosure with plane fronts. This factor is. not important {or the present discussion, since
the pressure distribution along the surface of the enclosure is still described by the trig--
onometric functions. Still another effect may be encountered at various combinations of

test frequency and enclosure size. An acoustic field may be established somewhere between

that which would ' e expected for an anechoic termination and an abrupt termination. In
such cases, a combination of trigonometric functions may be needed to represent the

acoustic field. Later in this section, we will utilize trigonometric roprescnmhons of acoustic

fields for estimating structural response to the mlds

2.1.2  Reverberant Fields

Another comunon type of acoustic test enclosure is a large room that is characterized
by low acoustic absorption at the internal surfuces of the room. lnsuch a room, 4 large
percentage of the acoustic energy incident upon a given surface is reflected fror that
surface. The resulting reverberant (diffuse) acoustic field has uniform energy density
throughout the volume of the enclosure, and all du*cctlons of propagation are equally

probable.
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. Ananalysis of the acoustic field in a reverberant room begins with the general wave
- *.; squation, although the equation must now account for propagation in three directions. In
~~ tts‘general form, the wave equation can be written as:

132p -
v2p=‘2"a"f | e

whcre the V2 operator indicates the second partial derivatives with respect to the X, ¥, and
Lz duectxons Solutions whith satxsfy equation (2.8) can be of the form:

(X, Y, 7, t)= Po(cos kyx)(cos kyy)(eos k z)aJ“Jt : (2.9)

_,::.‘: pmmled {he constants ky ky, and k, satisfy

=2 AZir 21kl ~
-E._\Acx tky?+k, (2.10)

These constants are also related to “‘component” wavelengths, the wavelengths associated
witly th thrée ceordinate axes, by

X7 | ! 2.11a)
' .
Ny® (2.11b)
el | | | 110
e, _ _
: 'l‘he chawuterastlc k equencnes in the room are restricted to values such ihat3
) ’ : T T T o
.I.I.X. . nz ' v . ’ .
+ + [—1} . : (2_1,_)
Qy R, : o

This analysxa may appear to contradict the previously stated reverbemnt field condi-
ticns of uniform eneig density and absence of a preferred direction of propagation. Equa-
tion (2.9). dl‘xeﬁ in fact, show that the pressure waves in a reverberant enclosure, at ‘a normal
mode f*equ@n&y wf ﬁxe enclosure, are highly directional The acoustic energy density, which
is propmtmné& to ihe pressure squared, will also vary widely in a room excited at a single
nomm;k mody: fquaewcy Therefore, in order to obt.in a diffuse field, the room must be
excited o « numbwc of anrmal mode frequencies. Stated differently, a diffuse field can. bc
establishied in & reverberant room only if the room is excited bya sigual that has energy
distributed-in a band of frequencies; ¢.g., by a random slgnal ‘

The exact number of modes that are excited in a given band of frequencies can be
determined from equation (2.12). As an examyle, consider a room with dimensions R,.=30,
Qy=40. and £,=31) feet. The (1,1,1)mode _(nx=ny._=nz=l )is seon to be 25.25sz. the (1, f '
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mode is 31.5 Hz, and so on. Each of these normal mode frequencies can be counsidered to be
a vector in a frequency space with orthogonal axes fy, fy, and f;. The total number of modes

~ below a given frequency, f is then approximated by

4
3c3

where V is the volume of the room. Differentiation of equation [2.13) vields an expression
for the number of modes, AN, within a band of frequencies of Af centered at a frequency f:

4V
AV o

(2.13)

AN Af (2.14)

C

A minimum of 10 modes should be excited within a given band in order to achieve uniform
energy density throughout the voiume of the room, and thereby establish a reasonably dif-
fuse field in the room.

The present study is concerned with sonic fatigue, so we need some means to relate the
above properties of the test room to the iesponse of the structure undergoing sonic fatigue
testing. The test enclosure/structural response dependence begins with the principle that
most of the energy acceptance of a structure occurs near the normal mode frequencies of
the structure. Just how near the excitation frequency must be to the normal mode fre-
quency is determined by the dataping of the structure. Panel structures of the type
commonly used in aerospace structures have low damping, typically ¢ <0.02. The bandwidth
of a normal mode frequency, Af, for a panel with damping ratio ¢, is approximated from

Af = 2¢f 2.15)
This expressi ~ombined with equation (2.14), yielding '
8n V¢ 3
N=om VS (2.16)
)

Equation (2. 16) thus shows the number of room modes that will be excited within a
structural resonant bandwidth, for a resonance with a center frequency f and damping ratio
¢. If the previously stated criterion of 10 modes is applied, equation (2.16) may be solved
for V, the room volume. Figure 2 presents a family of curves, for various values of {, for

the lowest frequency at which 10 modes are excited in a given room volume. At frequencies

" below this minimum irequency, the acoustic field will become more directional and will

have properties sit-.ar to the progressive wave fields. Above the minimum frequency, tm
acoustic field is diffuse, with a corresponding absence of directional propwtm '

Pressure distributions in a targe room excited by a rzmdom source cannot be described
with exact expressions, as was the case for simple harmonic sources. The pressures nwust in-
stead ¢ discussed 1 terms of their power spectra or correlation functions, For example, the
normalized cross-power spectrum for a bandwidth-limited random accoustic lield is given -
by ' :

i T ' .
L - i .
sin
G = - B | 217
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where X is the wavelength associated with the upper frequency of the band, and the indices
1and j represent locations in the field. This expression is valid for a diffuse field in which a
iarge number of room modes are excited within the bandwidth of the structure, The value
of the function depends on the separation between two points in the field rather than the
exact location at which the function is measured. If the size of the enclosure is such that
only a very few normal modes of the enclosure are excited, then the random acoustic field
becomes directional. For this case, the normalized cross-power spectral density can be
approximated by

Cpipj(x,y,z,f)=(cos kxxi)(cos kyyi)(cos kzzi)(cos kxxj Ycos k., y:)cos kzzj) (2.18)

yYi
where ky, ky, and k; represent the wave numbers of the characteristic frequencies of the
enclosure in the x, vy, and z directions, as detined in equation (2.11).

Studies described in the remainder of this section will consider acoustic fields which can be
described by the simple trigonometric functions.

2.2 ACOUSTIC COUPLING

A description of the acoustic field in a sonic fatigue test is one of two elements
needed to estimate the response of 2 structural specimen in an aconstic environment. The
other factor involves the dynamic properties of the structure itself. In this section, the
important dynamic characteristics of test specimens will be discussed, and methods will be
shown for coupling the acoustic ficlds with the structures to provide an estimate of the
structural response,

The structural system considered here is assumed to be a linear system, such that

the tree vibrations of the systcm can be described by a set of homogeneous second-order
linear differential equations,

TR TG RTY Wl =0 (2.19)
I the damping term is momentarity neglected, the set of equations can be solved to

give the undamped natueal frequencies of the étrgmtuml system, and the corresponding mode
shapes, Letting {®] represent the mode shapes, we can introduce the translormation matrix

o= (el %n’ B . - 2.20)

l l

where 9 is the normal coordinate, Substitution of equation (2.20} into equation (2.9 and
pre-multiplication by the trinspose of the modal matrix penm(s the equations of .hotion
to be re-written in normal coordinates as

P(w,J !+ [\wnz\] }n: =0

Equation (2.21) includes the offect of proportional damping, and displays the natural
frequencies of the stiucture, wy,. Note that the matrices containing { and w, are diagonal.
This property has the effect of uncoupling cach equution {rom the others. Later in this
Section, 4 normalized forcing function known as the participation factor will be introduc-
od that permits the response at cach mode to be c\.umatcd by using the uncoupicd equations

of motion in normal coordinates.
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Returning to equation (2.21), we consider a system whose normal mode frequencies and
damping properties are known. This equation describes n single-degree-of-freedom systems
whose responses combine linearly to descrihe the behavior of the total system.

The response of the system at each normal mode frequency can be discussed in terms
of the angular frequency and the dainping. The angular frequency . the nth normal mode
is denoted by w,. At that frequency, the effect of damping in the system is described by
§» Where § is the non-dimensional damping ratio. If a single-degree-of-freedom system
characterized by w, and §, is excited by a unit impulse function 8(t), the response of the
system is commonly designated by h(t), the unit impulse response function.

From h(t), another widely used property of dynamic systems, the complex frequency
response H(w), can be defined as

o0
H(w) = f h(tied@t gt ' (2.22)

The form of the integral in equation (2.22) indicates the frequency response function is the
Fourier transform of the impulse response function, h(t). The complex frequency response
function for a single degree of freedom system in non-dimensional form is

H(w) = l — | C(.23)

Pef— 1 + 28, —
1
n wy
For typical acrospace structures, equation (2.23) describes the system at cach of the
-n normal mode frequencies of the distributed structure.

Another property of the vibrating structural spmmm is the dynamic mude slmpe
assumed by the structure at a normal mode frequency. For the present, panct mode shapes
will be represented by characteristic beam functions: This simplitication will clarify e -
acoustic field/structurs] respeise coupling that is of primary intetest here: For example,
consider a panel with simply supported edges. and length € The normalized inode shape-
along the x-dimension of the panel, as X varies from 0 to €, may then be represented by

1 . ) N
TN o ; :
4’& LR R ) - - 224)
) | ' '-
T : '
where
A‘l’- & {n= l- zv 3: LR ‘.) L ' C (3’25)
n ' ’ ’

The term A, represents the wavelength of the strugtural response mode. Note that for ns1,
the mode shape Tunction is a simple hatf-sine wave, with maximum deflecton at the
center of the pancl. For n=2, a full sine-wave mode shape resuits.

The expressions for pressure distribution developed in Section 2.1 can now be com-
bined with the mode shape functions (o yield 4 parameter known as the participation factor,
1%, defined for one dimensional continuous system by

£

i - ' .
_Px“E_/; pix) Py (x)dx - {2.26)
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The two-dimensional case, which includes panels, is a logical extension of equation (2.26).
Since both the pressure distribution and the mode shape are separable functions of x and y,
the participation “actor for panels can likewise be represented by a product of the participa-
tion fuctors in the x and y directions,
I‘x) y = Iy i“y (2.27)

The participat.on factor is a measure of the extent to which cach mode shape ¢
participates in the response of the structure to a given pressure distribution, p{x). 1t is the
mean value ot the product of the structusal mode shape and the pressure distribution along
the structure. When the structural mode shape and the pressure distribution have the same
phase relationship, strong coupling cxists betweea the acoustiv field and the structure, and
significant structural response will result. To illustrate the valic of the participation factor
in estimating the structural response, equation (2.21; can be rewritfen with the excitation
expressed in terms of the participation factor for the i'b mode as

p
.. ) 5 0. : .
Bt Xy twT g ";l- I opt) : {2.28)

The solution to equation (2.28Y can be stiied in terms of the previousdy-developed
complex freguency response function Hiw), For i simple harmonie exeitadion at « Deguency
Wy, the normalized response in the oY made is piven by :

). A Y
Py Uy o .
Baw,) @ =3 Hiw) Fiw ) {22}
Gt M, W

This rosult, whivh i3 derived wn Appending AL s readily extended to any perindic fuisction
that can be separated into ity harmonic componends through a Founer series analy s, At

each of the m hamonics of the fundamental frequency, the solidion becomes

PQ I‘t' : . - wppy
Hiw ) & = """{T Himw i ¥ tmwo} : S {2
w2} A _

CThe response of the stpscture s § xmd hy <mi~m;. the fransformation fram normal
coordinates back to tie arigingl ceordinate system,

’}\ch)i 2 [$) Entw (2

: : B S

For random foraing | anctions, the viutatmn and response of the system mi! be oxpressed
Jin terms of power spectral densit; functions The oxcitation can be represeated by {Spl.a

matnx cordaining the auto- and Cros-power spectral densitios of the excitation i novial
voordinates. Then, wath the compley response freguency Wlw as defined eardict. the re

Sponse is i
‘Sﬂ! w {H’i’w) [_Si;i [H(wll ) {

whete (S,;i is the matnix of power spectral desmity functions for the nomalized responses

4

323

It terms of the participation {actors, cqualion (2. 3311s rewnition as

{8, = [Hﬁ(wi](l’irj]Pi(u)ﬂsmm S (2.33)

10
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where the " terms are the participation factors for the ith ana jth modes. Sp;p; s the auto-
power spectral density of the excitation pressure at some arbitrary point in the . oustic
field.

For structural panels, the dissipation is usuatly low, and the equations relating the
response to the excitation can be simplified, as discussed in Appendix A. In equation
(2.33), the off-diagonal terms may be neglected, yielding

e 2l
Sn— [\HHH(w)\} bpipi (72.34)

This result shows that the response in normal voordinates is reduced to a function of
the participation factors and the trequency response functions. The response may be stated
in terms of the original coordinate systum by making the transfornration from normal
coordinates,

.
[S3) = 101 (8] 1)

tas
(¥

Continuing with the p,aruup;twn factor coneepl, we cian now show how the pressure
distributions and mode shapes dre related to produce significant excitation ona test speci-
e, As an example. the prossure distribution in a progressive wave section with perfeetly

nechoie termination was given in egitatian (2.0). Neglecting the timevarying component
;-'m:! sewriting equation (2.2), we van expross the spatia} distribution ol the pressure by

Jex Jmx s
p(x)’a LS e F ) AR e : {20y
* ;_! b 'j N

Equation (2361 is for a system with goometsy as shownn Figure 1. The addition of o -
constant 1o fhe distanee wanable v in s equafon would vause the presstire distribution
(o be correspondigl hifted slong the  avs. Equation (2.36) 1y denved uf Appendis AL

From cquation (2. 24), we can now sclect 3 mode shape vhich we wish fo examne -
for 1t coupling with the above prassure distribution. Il we ket ne 1, thic partivipation f.n.h:q
for tius cambination of prosurc distabution aadanede shape s evatusted ag

Qexs o 2y ' -

Vi k N LRI TT SRS 1Y (1373}
g N
and

Y “ . ' , :

s N& SRR . aE )
L ‘!ef‘/‘ an Lo wn S ‘“i @I

! « '\p A . ,

The subsenipte R aind | ave used Lo derote real and imaginary componients, to account
Tor the imaginary operatos in the p(xj oxpresivd. The components are comberied o ginve
the absolute vahic of the magmitude of the prtiapation factor for the progressive wave
section with perfoctly anechoke termuimation,
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Participation tactors for other terminations, where the pressure distribution is represented
by a single real trigonometric function, are found in a similar manner. Only a real value for
' will result, as in cquation (2.37a). For g progressive wave sevtion with g rigid termination,
the pressure distribution takes the torm

-} = e zﬂ\ 4 )
pIx) =P qos —— (2.39)
Ap

where the exact location 1 the distribution within an enclosure can be shifted by adding a
constant to the X vanable. The participation factor for n=1 mode now becomes

~X h) h}
et cos S g S (2.40)
| S COs T N Rt A Y -
~0 RP a\r

1t is interesting Lo compare the progressive wave test section with a normal incidence
test section. In normal incidence testing, the acoustic wavey sravel in a direction perpendicular
to the test spectnen surface, and the excitation pressure” are esserttially unitorm across the
specimens At fow values of wavelength ratio, where the structural response wavelength is
much Iess than the aeoustic excitatic:, wavelength, the pressures are also uniform along the
specimen. Under the condition of tow wavele igth ratio, a consideration of the specimen
response would show no difference between the progressise wave tesg sectio< and the nonaal
ncidence armangement.

The partivipation Dactor provides some msight into the voupliag between dhe potentally
large number of combinations of structurad stodes and excitation frequcnaios. I the above
expressgons for P the term A{ represends the wavelengtit of the stravtural Fesposse, as res
leted 1o the gweometry of e structuse aveardint e equation €2 230 on the otherhand,
s the vavelength assocheted with the exctiabion pressure frequency . asdetermnad fre the
ustal relatiomstug between wavelength, swlocity ot propagatian, sind frequency,

P AN t2dl

We can sow define 2 new parasieler, wavew “sth ratic, A A, such that
¢ :

. .\! Jiao lht,
Cwravelengtin fatio ® Lo e

P \ “}\ F11% ’

?

Uking wavelength ratie as an tdependent.nable, patfivgation factars con be evaluaind
fur wenious sttuctise mades - that v for o s wilue of 10 sthe parhapaston fagier 1 can
be evaluated as the wavebength ratio ws sHowest tovary Fagsre s 2 famudy of cunves Sy
the participation factor, acgiven o camationgs (2 371 for o progreaive wave «ohan with
perfzotly anechor termunation. The partiapation fxcton are presented as RMS quantaties
to faciitate addition of vomp aenty The i phase component of partiigation faciog has
g maxmmen  lue for the G strctural mode (1) at o saveloagth ratio of zero This
represents the case where the wavchenpth of the exegtation presaare is much larger than
the structural segponse wavclength, so that the dnscture appras (0 by exciled By s prese
sure drtnhution that s unfar 3 acrass the structuse The highes order moedes have a
masimum value of partaipation factor near 2 wivelength ratie of nne. The qaadrat¢
compenent f partt Patien factor alvwavs has a wasomum valuce al 2 wavelength ratwe of
one, and i value of 2oro gt 2 scavelengih sabo of sera, Iy gptificant Gl ibe partivipa:
tion fackor boeomes very small for wavelength fation greater than f1v 1 At larger wavelength
ratios. acoustic energy Becomes very el fidient 2s 2 mechamsm for produling saves i 3
afructura! specunten. In Figure 4. the total participation {actor has been plotied, according
to equation (2. 38).
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- The above discussions hiave considered only those structural modes in the x direction,
the direction of the pressure disiribution. In a progressive wave test section, the pressure is
essentially uniform in the y direction (perpendicular to the wave propagation). Therefore,
if we consider the structural modes in the y directiua, the participation factor wilf be zero
for all the odd-number modes. This result is piotted in Figure 4, where the participation
factor has been calculated from an expression similar to equation (2.26) except that the

- variable has been replaced by y. With uniform pressure distribution in the y direction, p(y)

becemes a constant, and the points shown in Figure 4 result from integrating the simple
trigonometric mode shapes. As in the case for participation factors in the x direction, it is
gpparent that the acoustic-structural coupling is very poor at all wavelength ratics except
ratios niear unity.

As examples of how the wavelength ratio and participation factor concepts car be
used to estimate structural response, two types of structural configurations - beams and ‘
plates - will be censidered here. This discussion will assume that the excitation frequency
coincides with the structural resonance frequency, again recognizing that the acceptance -
of energy by structural members occurs principally at resonances. For rectangular cross-
section beams, the bending frequencies are determined from

h E , . :
fr = ai 27 -P— : . (2.43)
where h and £ are the thickness and length of the beam, respectively, and a; is a constant
determined by the end conditions of the beam and the order of the mode being considered.
For many commonly used engineering materials, the E/p ratic does not change widely, and
a value of 1.02 x 108 (inches) was used here. The expresswn for the resonant frequency of
the structure may then be written as

. to show the desired dependence-on thickness and length only. If we now constrain the

frequency of the excitation pressure, fp to be equal to the structural resonance, and solve
tor the wavelength of the pressure from equatxon (2:41), we obtam

i

C
Ap = c/'f_p Tah/2%  alh (243)

Finally, using the expression for structural response wavelength as given in equation (2.25)
for the first resonant mode of the beam (n=1), the wavelength ratio is Getermined as

2 ’ . |
Mg = = (2.46)
c/a; h :

15




-where the new constant, a ', includes the effect of boundary condxtxons, mode number
speed of sound and physxcal properties of the beain material. 'I‘he values of wavelength ratio
for three end conditions for beams, as a function of h/e, are p!ottad in Figiirs 5. These -
curves, then, become the first step in estxmatmg the response of a beam fo an\ acoustic ex-
citation. From the h/? ratio and end conditions of the beam, the waveiéngth ratio is '
determined directly from the curve. The wavelength ratio is used to enter a curve of
participation factor for the type of acoustic field bemg conszdered ‘as for example, Figure
3. The relative magnitude of the participation factor gives an mdlcation of the effectweness
of a given test method for inducing response in a structure.

‘Square panel structures have been treated in a manner similar to the beam analysis,
and the results are plotted in Figure 6, Three edge conditions are considered for panels:
fixed, simply supported, and free. As in the case of the beams, results are shown only for
the first mode resonances. For panels, however, it is important to show how the wavelength
ratio changes with higher order modes. The curves in Figures 7, 8, and 9 are plots of nor-
malized wavelength ratios for square plates. Values of mode-number in the x-direction are
used as the abscissa, while mede-numbers in the y direction are shown as constant lines on
the plot. The structural response wavlength in the x direction (direction of acoustic propa-
gation) has been used in the numerator of the wavelength ratio expression. Each wavelength
_ ratio is normalized relative to the wavelength ratio for the first mode,

>‘r er/)\ 2.473
.4
p ) s
()\Tx/ p) __.1 n=1
Examination of Figures 7, 8, and 9, along with a plot of the partmpatxon factor for
the type of acoustic enclosure used on a particular test, provides some insight into the coup-

ling that might be e_xpeéted between a specimen and anacoustic field.
2.3 TEMPERATURE EFFECTS ON ACOUSTIC FIELDS

Experiments were conducted to determine the effect_ of thermal energy on the
acoustic field. The experimental apparatus (described in more detail in Section 4, Figure
26) consisted of a rectangular cross-section test enclosure with a bank of 16 quartz lamps,
each rated at 1600 watts, heating a 1 5-inch-square panel. Tests were conducted at panel
temperatures ranging from 150°F to 475°F. Measurements were made to determine the
power required to hold the panel center temperature at various levels, both in still air and
with an air flow over the heated panel. The results are plotted in Figure 10, where the air
mass flow is shown per unit cross-section area of the enclosure. The increase in electrical
power generates heat that is-lost through several mechanisms - the test panel, the surround-
ing support structure, the lamp-bank reflector, aud the air in the test section. If it is assumed
that all of the increase in electrical power is converted into an increase in the gas stagnation
temperature, then the increase in gas tem ’yerature can be computed from the power in-
crease, mass flow; and specific heat from

W ' ' :
AT= 2 c; (2.48)
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FIGURE 6 :
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FIGURE?7?
NORMALIZED WAVE LENGTH RATIO
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FIGURE 8
NORMALIZED WAVE LENGTH RATIO
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The increase in power at a panel temperature of 475° was approximately 2600 watts.
This power increase, combined with a mass flow for the gas of 2.5 pounds per second,
corresponds to an increase of 4°F in the gas temperature. This small change in gas temper- -
ature was verified by the experimental work, where no increase in gas temperature was
observed. Since the increase in gas temperature can be considered negligible, corresponding
changes in gas properties (speed of sound and density) can also be neglected. This conclusion
is further verified by comparing the transfer functions for the pressure data in Figures 11 and
12. These curves represent transfer functions between two micraphones at two temperature
conditions. One microphone was located in the thermal field near the center of the panel,
and its output is normalized with respect to a reference microphone located at the input to
the {cst section, but outside of the thermal field.

The effect of a significant increase in gas temperature on the acoustic fields would be -
to increase ¢, the velocity of sound, and lecrease p,, the equilibrium density of the gas.
These changes would invalidate the basic wave equations, which are derived oa the basis of
the equilibrium density and velocity of propagation heing uniform throughout the medium.
Introduction of spatial variations in ¢ and p,, would requu the derivation of a new set of
wave equations. As a practical matter, however, the air flows that are normally associated
with conventional acoustic noise sources, such as air-stream modulators, are sufficient to
keep the air at a near-ambient temperature. Consequently, the effect of air temporiture
changes on the acoustic fields can be neglected in elevated tcmperaturc SONiC taugun tess

74 TESTY !:QthQUtS ACOUSTICE ’\WIRONMENT SlMULAT ION

Murmerous test se\,hmqw:s are avatlahic for conducting sonic fatigue tests on paucl struce

~. tares. fn Sections 2.1 through 2.3; the acoustic fields for sonic fatigae tests were deseribed,
" end the coupling of the sceustic frlds with structural specimens wis discussed, Tn this section,’

‘cagher results will heused ina mmmmai xztampkc to illustrate npphua*:\m oi those results
16 an cxpmmemal situation, :

- Pefore ))nw"‘dsa > with the example it %hmﬁd be neted thet :h : ulums:c Objt‘dt\é of
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~upoustie environment, A study of the dynatnic pogertivs of the iiﬁhhﬂ: ghvuld ceveal
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o m}ﬂm‘d b achicve this fajture made in me h}famm : :
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" in Figdre 9 are acoandized mﬁu spait {0 e w:swlcngih ratic ot fie Satadud

vehues tsker rom Figure ¥ mist be mudtsplied by LT3 o givedhe dctul wmec«;mzu mtw '
for this specunen. Takie [ pmsum toth the nofwlized wavelength satio, .\ 0y 5o Gertad the

- actund walue, Dt weade number vamumsa i’mm L3 f(“f {k*ﬁi f x’é;fmrsm«?afm 0 (y
‘.c'b.m{mm .;_3 . LT P LT

23

provy




G

, FIGURE 11

! TRANSFER FUNCTION

'PANEL CENTER PRESSURE TO REFERENCE PRESSURE
TEMPERATURE: AMBIENT

i i0

U TTTT

PSiPSI

ranster Function

[

iy

3

¥
{
i
|
i
19-2 L d | W O T i1 S N N I W A
R , 00 1000 2000
: : Frequoncy - Mg




FIGURE 12
TRANSFER FUNCTION
PANEL CENTER PRESSURE TO REFERENCE PRESSURE
TEMPERATURE 475°F
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TABLE 1

WAVELENGTH RATIO

m - Mode Numbor in y Direction

2

M,

7

0.1825

54

0.146

01506
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It wili now be assumed that the panel -ill be installed in the wal} of 2 progressive wave
test sectic: vith perfectly anechoic termination. The fotal porticipation factor will be the
product of wne participation factors in the x and y directions, I', Iy, according to zquation
(2.27). The x and y participation factors can be taken from the curves in Figure 4. The
values of participation factor are tabulated in Table 2 for the same variation in mode numbers.

An inspection of the values of I‘XI‘ in Table 2 shows that the first mode (n=m=1])is
the most strongly excited mode. The excitation of the next strongest mode {n=1, m=3)is
only 30% of the first mode, and the other modes are even less responsive.

Use of the wavelength ratio parameter also permits us to compare the progiessive wave
test section section with a normal incidence test arrangern. . it. We redall that the first mode
ratio was 0.073 for the progressive wave setup, giving a participation factor 0.20. For normal
incidence testing, the pressure across the specimen would be uniform, correspvmdi*;g toa
A, that approaches infinity, and a corresponding wavelength ratio of zero. The zero wave-
length ratio for normal incidence testing gives essmtxally the samie partlcxpanon factor as
that for the progressive wave section. e

A similar argument ¢an be made for testing this ‘ipam‘:l in a laige reverberation chamber.
In this case, we must first determing if the-acoustic field apr 2ars t5> be directional or d'fi’"use .
in the frequency range of the 1,1 mode of the panel specimen, The first mode frﬂquency
~an be computed from the ﬁrst mode wavelength ratio and th(* sanet length

. 1_ _/ ) | T S 249y
S5 | e

Equation (2.49) yields a {irst modp fr»quen(“. of 40.5. Hz for the panel If we Now assume

. that the panel is lightiy damped, and let ¢ = 0.01 for this mode, we can ‘enter Figure 2 and -

see that a room volume of appreximately 600,000 Tt would be required in prder to obtam a
truly diffuse acoustic field at the first mede resonance. From equation (2.16), we seecthat

A room volume of 80,000 £t3 would be required to have even a single mode excited within-
the bandwidth of the structural resonance. The acoustic field for such a room. would be
considered purely directional at the first mode resonance, and the sume part;cxpauon factor

_computad for the progressive wave section would apply

This uxample indicates that the choice of grazmg or normal mcxdence ﬁdd nay not
have much significance from a consideration of the response induzed in the test sp%m*en
Enclésures have perfectly anechoic terminations will result in both sine and cosine terms,
in the pressure distribution, and wxll consequently have a hloher probabxlzty of chtmg
structuml modes.
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TABLE 2
PARTICIPATION FACTORS

m - Mode number in y direction

2

1

.20 0.44 0 0

0.44

0.15

0.06

00t | 003 0 0

013

0.1

0.02

0.06 0.13 0 0

-0.08

0.16

0.01
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SECTION 3
THERMAL ENVIRONMENT SIMULATION

, ‘Laboratory simulation of the thermai envuonment is an importani aspect o npic
fatigue testing at elevated temperatures. The usual probieras of temperature simu,...ion are
compounded by the requirement that the thermal source apparatus be capable of surviving
ir: tie high intensity acoustic sound field. This section describes.a procedsre for calculating
the temperature distribution in a heated panel. A discussion of methods for xmplementzng
heat sources for sonic fatlgue testing is then presented ; B

3.1 THERMAL FIELD STUDIES

e Mis Ly 1 b b o mat €4

Prediction of the temperature distributicn in a heated sonic tatlgue *pemmen is based
primarily on the intensity of the heat source and the thermodynamic propesties ofsghe test
-specimen. A secondary consideration ie the effect of air flow associated with-the acoustic
noise sources in a given experimental arfangetent. The latter effect will be negiscted while
tie procedure for predicting termperatares from.a radiant heat source is discussed ~The analy-
sis is described for a simplé.panel, but can be modified to account for such conditions as =

nonuniform heat flux, variable edge temperdxures, and confmumtlons thdt representmore <"
complex aerospace panels: - =

The analytical model used is shown in Figure 13. The panel was &)_nsidere'd" {obe
sytnmetrical zbout a center-line parallel to the ditection of air flow, with the i and’j
directions as shown. Square elements, with sides equal to. &x, were chosen for simplicity

“in calculation. Thé 1nterscct10ns of the grid lmcs were the pomts at v«hxch the temperaturc ‘
was to be computed. - B -

e ] +

At any mtersectlon @, J) a heat baldncc may be writien. The algebralc sum of the con-

~ duction from each of the four neighboring intersections, plus the heat generated (abeorbed)
. . -must be equal to zero in the steady state. The heat generatud from absorbcd radzatmn is . -
- expressed as L e x T

= F (Ax)? a1

gen
where F is the absorbed radiant heat flux in BTU per second per unit area. Actual values of
F that may be used in a given experimental situation will be diseussed in Section.3.2. .-

- The conduction from a neighboring intersection may be written

‘ (T T
q*ond =k AxAz (I;'"”—{"'l"]') 3.2)
q(:ond =k Az(Tj. 4 j—Ti ‘) (3.3\

where Q.4 is the heat conducted from the (i1, j} intersection to the (i, j ) mtersectxon.
Similar expressions are written for the three remaining intersections, and these are com-
bined with equation (3.1) to yield the heat balance equation

- KAZIT 4 Ty gt vt Ty ot 4Ty 1 +FO0E=0  B4)
'_ i Solving for T; ; yields

¢ ) F(Ax)2 -
) % ) Ti"j=-&- Ti-1 ]+Tl ﬁ'l +TX+1 j+Tl _]-'1 mw | (35)
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ANALYTICAL MODEL FOR TEMPERATURE PREDICTION
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Equation (3.5) must be eval"-ted for each intersection point on the grid. An iterative
technique is used, in which an initial temperature distribution is assumed. A “new” tem-
perature is calculated for each point using the “old” temperature for the neighboring -
points in the calculation. Each “new” temperature then becomes the “old” temperature
for the next series of calculations, and this procedure is repested as the difference between
the “new” and *‘old” temperature becomes vanishingly small. When this difference is less
than some specified value, the calculation is considered complete.

“ The analysis must also account for the radiation into and away from the test specimen.
~ A given test setup will include an array of quartz lamp radiant heaters backed up by reflectors
on as many sides as possible, consistent with the air flow requirements of the acoustic noise -
sources. To enhance the radiant heat transfer efficiency of the setup, the Iamp array: and
. reflectors wouid be placed close to the test panel

The thermal model for the radiative heat transfer problem consxdcrs the lamp
reflectors to be cooled, high reflectivity, diffuse reflecting surfaces The specimen panel
~ “sees” above itself a diffuse reflection of itself; i.e., another pane) with approximately
™ the same emissivity and surface temperature, The equation expressing the net ladxaut power
transferred out of the (i, j) intersection in such a configuration is written

4 4 |
Goutd, j) = 0 FeFa (4%)? (Ti, i T ) (3.6)

‘The emissivity factor, F, for the case of a small area Ay of emissivity €1, surrounded
by a larger area A, of emissivity €, can be expressed as

1 .
F,= '
v l/e1+_f}_1 1 ‘ » 3.7
Ax\e2 , ,
When A, is much greater then A, which is the case for the assumed model, it is noted
_ that

Al : _ N

pe“"él as K;"’O - o o ) (3.8)

Similarly, for this geometry, the view factor F, (ratio of the sohd angle subtended by
A, from Ai to the solid angle of hemispherical space) approaches 1.0 as Ay /A approfiches
zero. Ty is the rffective reradiative temperature produced by the diffuse reﬂector reflecting -
“the spec1men panel radiation. The reradiative’temperature is considered. to be spatially uni-
form, and equal to a fourth power average of the specimen plate temperature, as follows,

e I‘vv:l DG | | @ 2

T MxN =g j=0 LIt - e T
where M and N'are the number of interior grid lines an the pmu,i in the i and ,) dlructxons, o
‘respectively. A : 7

Equating the heat balance cquanon (uquanon (3 4)) to the radumt exch.mgc (equa- '

txon (3 6)) yields "

ERYIL TS WNEL WINEY W ~41l i +r(Ax)2 o

0y (Ax12 ('ri’_j “T)=0 B A1 N
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. fion will be diseuswd

Rearranging the terms yields

_ F(Ax>2

Tty i * T gt + Ty 5+ T jor - 4T1 YA T
g€y (axy2 4 4 __ B _ -
-i(‘-&;-‘-—-(Ti’j—?r)*o : @3.11)

which is the basic equation to be solved for T; ;. The presence of the fourth power terms

_ complicates the solution, and so a lmeanzatlon scheme has been applied to the equation,
At the same time, an algorithm is used which prevents the iterative solution from diverg-
" ing. In linearizing the fourth order term, the “old™ temperatures are assigned the value

A 1, A ,} 1 . etc., while the “new” temperature remains Ti, i Using this nomen-
clature {’f 4 is written as

Ti;j =4A?,j T, j- 3Ai j (3.12)
Then, using thi‘s result in equation (3.11), the basic equation becomes
Ai—l,j+Ai,j+1*Ai+l,j+Ai,j~A1 4T1,J+i(§;)2 |
(3.13)
_ 9%y (AX)2 [4A1 T, ”3At 1+ L %€ (Ax)2 T‘:=0
“kdz kAz
- As a further simplification, two new constants are defined, - |
3.31:2:)‘2 e
a_xid _. | ‘ _ |
OGI(AX)z . SR S
Fmally, solvmg tor'l“l jyields R R -'4" .
Y u*A; m*Am j'”\i; 1”\”“1& +K1T
,‘Ti, i%2 , , . G. 16)

3
1+K}Alj

This t.qmtiou. then. is solved in exactlv the same: pianner as cquation 3. S) for the

“-conduction case only. A cowputer program for the temperature’ distribution as dehn- .
ed in equation (3.,16), is prc,sented in Appmdax B. - : o

3.2 DESIGN OF HEAT SQUR(.ES

o Quartz lamp banks and their associated reflectors were used as lieat sources in this
study cffort. While quartz lamps have been widely used in standard laboratory conditions

for a number of years, the introduction of these lamp banks into a high intensity acoustic
- environment has brought new problems. [n the following paragraphs, the overatl considera-

tions for a lamp bank design Wlli first be smmduul Thu\. some dctxuls of ths.' lamp installa-
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3.2.1 Reflector Design Considerations

The purpose of a quartz lamp bank/reflector assembly is to convert electrical energy
into thermal energy that is absorbed on a test specimen. The efficiency with which this .
objective is reached is a measure of the success of a given design. A number of high quality = -
quartz lamp banks are available commercially. The specified performance of these lamp
banks can be used in equation (3.14) as part of e heater design for sonic fatugue test-
ing. The basic parameter for this purpose is the radiated heat flux from the lamp bank.
For a representative lamp bank, 75 watts per inch? (approximately 10 BTU per ft2-second)
can be conservatively obtained at the face of the lamp bank. This output is fdr each lamp-
in the bank, based on a lamp spacing of 1 inch between centers, and electrical power of -
100 watts per inch applied to the lamps. This example represents an electrical-to-thermal
power conversion efticiency of 75%. Higher flux densitires may be obtained by a com-
bination of closer lamp spacing and higher power applied to the lamps, with a correspond—
ir g decrease in the useful life and reliability of the lamp bank.

The actual value of heat flux absorbed by the spucimen depends on-a number of
factors, such as the distance of the lamp bank from the specimen, the absorptivity of the
specimen, and losses from the specimen. Therefore, the value for F used in equation ‘

* (3.14) should be lower than the nominal heat flux that a lamp bank can generate. A

bright, highly polished specimen, for example, generally absorbs loss radiant heat energy
than a dull, darkened specimen. Likewise,a panel with insulation on the side away from
the radiant heater could be raised to a specified temperature with less applicd heat than -

a similar uninsulated panel. ’l‘hcsc factors can be c.ontrcllﬂd to a largc extent in :.onic

o - fauguc tests.

- As stated previously, the acoustic environment mtroduces new probléms in. tm use "’
of quartz lamp banks. bxtsznzu&. commercial cquipmuu is designed to be used in 4 nbimt
- conditions. ’I‘lmzf‘arc a special quartz lanip reflector was dw&ncd for use in the pi.cent
~ study. The reflector is conventional in several respects. First, a sheet F0.10-lnch: lhu.ls
copper is used as the basic reflector. The reflector was drilled to permit instaliation of .

- _sixteen T3/CL quartz heat lamps. .ualamp spaung, oi‘ | Oim.h 'I‘he»se are standard l6-= S
B mc.h long, lfi()(l-wau guartz lamps SN

. A umque feature of the reflector aswmhly is- tiw wﬂcctm -.urmw ilsvif Mmt )
reflectors are designed with a specular finish. The refloctor for this study, howevw, wm

- { designed to provide a diffuse surface, while retaining a high' dcgrcc of refletivity: Thcmfuw, o

- the side of the reflector facing the quartz lamps was surfaced with a sheet of fine emery
~ paper, onto which a very thin iayer of gold had begn vacuum deposited. The resulting sun - -
'-face lmd the desm.d diftusion propnrtiw, mmbincd \v:th ] reﬂm.uvity ol approxmwtcly 95“‘ -

. Auottu,r dqmtture trom cmwmuoml u.ﬂcu(at dw;,n w-as the mtmducuou ot dmnp—
_ing into the reflector to feduce its resporise to the acoustic, ﬁc!d A rigid plate (1.0-inch -

. thick aluminum) was bolted to the back of the copper refloctor-plate; wim a constrained .

- layér of RTV 655 Silicone Rubber between the reflector und the back-up plate, Allhaugh

“RTV 655 breaks down ai temperaturas above SO0PF, the material was not permitted to™ - -

* reach that temperature is this instalation. The relatively low temperatures maintained in the - o

R1V 655 resulted from a combination of the low thermal transmission of the sposial re- "
- flective surface and the cooling effect of the water circulated through the copper coils on- o
" the back of the reflector. The dumping effect provided by the RTV 6535 rediiced the response © -

of tlw main reflector to an m.cp(ablc lcval th:oughout the tu;,h t..mpcratuu ‘acoustic tests. ’




The thermodynamic performance of the lamp bank/reflector assembly was evaluated
in a sonic fatigue test installation. The total electrical power required to heat the test panel -
to a given center temperature was recorded with no air flow, and then with an air flow
representative of a sonic fatigue test. Since commonly used acoustic noise sources modulate
a stream of compressed air, some air flow can be anticipated in elevated temperatute sonic
fatigue tests. Figure 10 shows the electrical power required to maintain a given center
temperature on the test panel as the air flow is increased to a typical value for the Wyle
WAS-3000 noise source. The curve is given in units of air mass per second per unit cross
sectional area of the test enclosure. This data indicates that the additional power required
to maintain specimen tempemture in the presence of air flow does not exceed the capacnty
of » representative lamp bank.

I ‘Jdmon to structural dynat.ic and thermodynamic influences on reflector design,
the effect of the reflector on the ucoustic field must be considered. Three types of acoustic
~ test arrangements will be discussed: progressive wave, normal incidence, and large reverber-
ant enclosures. The last two - normal incidence and reverberant - can be considered at the
‘same time, since in both arrangements a lamp bank reflector will effectively mask the test
* specimen from’ the acoustic excitation field. If the lamp bank is moved away from the
specimen to permit the acoustic field to reach the specimen, a corresponding reduction in

heat flux density is experienced. This method might prove satisfactory in cases where a
relatively low percent of the available encrgy from a lamp bank is needed to bring the
‘specimen to test temperature. Alternatively, it might be possible to heat the test specimen
~ from theside away from the-acoustic field. In the case of rhin panels with no stiffeners,

~ this technique should cause no problem, For a panel with structural members on its back . -
face, heating from the back would result in hot spots on-the structural members, while
the specimen pancl itself would not receive unifonm heating. The structural members coudd -
be insulated from the heating systzm to reduce the hot spots, but tlm wauld nol allwiatc.,
‘the: nou-um(orm heating of the spmmcn panel, : :

For the progressive wave test sections, the lamp buk hms tm‘ luss effect on the .zcaustie, -

 field. The lamp bank cun be oriented so thut only the eidge of the reflector prosents dtself -

o the scoustic fivfld. The thickuess of the panel is small umnpm‘d to the crosssection dnm.u-

. sloivof the enclosure, resmltmg in mm.dl\ nodistortion of theacoustic field, \Vl\ilu itis
L pomble to set up standing waves batween the reflector and the test specimen, the i’mqum- S
o cies at which standing wavs ‘would a’flpt‘li’ depend on the: spacing between the reflector

_and the test specimern, A typical spacing would be in the range of theee to six inches, which™

would support standing waves at 2000 Hz and 1000 Ha, respectively. These frequencies afe’ o

- above the mange i which fundamental structural resonances normally vecur,, Uirders these
" conditions, the effect of t!u. famp !mnh on the Acouslic: ﬁdd ina probms;ive wave mt
- section can be uwg!u.ud g

- 3. 2.2 ("mm L-.imp lusszzllmom

Nomul installations of quait2 lsmps in reﬂcchm do umt unmdcr the dyammm
- motitm of tire rellector. The high intensity acoustic noise environment, however, causes
e wotion of the'reflector, vvan in the highty-damped reflector described above, A series
+ of experiments was conducted to duenuum u\c .ﬁnhty of qmrtz lamm to willn.tand dymzw -
i umromuetm :




" Inone test, sn unpowered quartz lamp was instrumented with strain gages to detect
bending strain in the quartz cnvelope of the lamp. The lamp was then freely suspended in
front of an acoustic noise source, and subjected to increasing sound pressure levels up to
161 dB. The stran in ihe quartz eavelope wes recnrded at several sound pressure levels, as
plotted in Fzgure 14. Extrapoiation of this data indicates that the quartz lamgs wﬂl sustain
aoowxcally-mduced loads at sound pressure levele in txcess of 170 dB.

" Thes conclusior: was substantiated by conducting vibration tssts on & quartz jamp. For
the vibration testing, the 2uds of the lamp were rigidly bonded to a vibration fixture, permit- .
ting excitation to be apphed through ihe ends of the lamp. The lamp was excited at input
levels up to 30 g's at the first bending mode froquzn..y of the lamp, with no failure of the
envelope. Failure of a filament occurred at 21 g's, at which level the stress in the quartz -
- envelope was approxma tely 3600 psi, which is half of the nomipal ultimate strength of
- - the quartz material. The vibtation testing was considered to be a far more severe test of
* * the lamp than the acoustic testing, since no filament failures were expetienced durmg
- acoustic testing. In addition to the filament failure, the quartz lamp showed signs of
~“gtching” inside the Jamp 43 ¥ result of motion of the ﬁlamem support dxscs dutmg
- both vibration and awmtu. testing. .

) Quartz lamps were also subjected to mung at e!evatcd tempvntum. One i.tmp, wluch
. had experienced etching ssa result of carlier acoustic tests, was taken to fuil rated power
7 witheut fallure, indicating. that the etching had no effect onlamp performance. Another
~puartz Jamo was operated at haif rated power and subjected tosimsoidal vibration tests.
“The vibration input wis apptied st the first huzdu*g t‘rbquem.y of ﬂw‘ hmm at lev;h up
: _'_:;. ta c%” g's. No faifures omxmd during nlus t«m SRR .

- Tiw tl‘."si.i ckmribed a.mv\ indicate that dirwi uxumtian v:zf tha quartz hmps bv t!w ,
g wusziu lield can ke aeglocted. This ul:wwaﬁmt o reaspaably trom & considerationofthe -
LRk shze o the kimps t3}3~inci» diameter) relstive 1o the acoustic wamm:g\hs (gecater han |-
e fout) at the lamp resonances. At thse wivelongths, the pressure gradion! across the hamp
L is nghigible, 80 that novddgnificant prossure diffarentiol nopears across the lamip to exclte o
S 8 c‘m me oum‘ h.mﬁ vnbmmual m\muﬁm‘t Lﬁﬂ } *-‘uam.;aiwd to ﬁm tamp by the mﬂw L

T ’Im: raﬂwtw dmgm dwrﬁhm in twt&nn 2 i redumi the v:bfatmn i the rofles *tm ‘

S(m’m vilratic B st present in tha rellecror, ch-wn and s transmilted to the lamps o
o through the lampholders. Thevefore, :m lammm!d.xmtaimhm nseéi wag hwestw!ed '
BRI xm aneg o phentisl mgm: vament. . : :

S m migimt mmm iamgb msmllatwns mmd in the ekpuimcmal para af tlns u\xdv were. A
' mmie with standerd covamie L1100 lapheldeis, as shown B Figure 15, An oxcessivé num- 0 ©
- ber af fagty failuren was exporionced with B installstion when the high Hitensity acoustic
polse snvironment cxgecded 160 dB. Ond predominant type of failure was a fricture of
the quartz envdmm e end geal, i area wherp the envelope aaakes a transition from L] o
- chrcular pross.ciition to 3. flas tab, § is through this tab thay the fead wirc is broughtoit. =~ ¢
.- Anotlr tyg ical fadiure mode was !‘at:,;mm; of the stranded fead Wwire-just outside &t e
~ Jop. Both of thuse types of Tailures fesult from motion of (e kamp ends within e -
caramic nuidur sinee tﬁw *amm. 13 i"miy i the lm!dm ina uormai msial!atmn. ,




FIGURE 14
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Modifications to the normal lamp installation in the LT-100 holders were tried on
several test runs. One modification was to use self-locking nuts on the lampholder, to
prevent the holder from becoming ioose on the reflector. Another change was to pack
asbestos cloth or fiberglass cloth around the lamp end seals to reduce motion of the lamps
withun the holders. These mivdifications were su~cessfil in redugine the frequeacy of lamy
failures. The cloth materials, however, could not be reliably retained in the holders during

high intensity acoustic testing. These modifications also tended to change the predommaut'

mode of lamp failure to a failure within the quartz envelope.

A different type of lampholder was evaluated on some lamps. This holder, manufac-
tured by Research Incorporated, is identified as the RI 8325-1 holder. It consists of a
metal stip that securely clamps the flat end of the quartz lamp, as shown in Figure 16.
The 8325-1 holder was evalusted in its “as-supplied™ condition, gs well as with asbestos
or fiberglass cloth-wrapped around the endseals. Some failures were still experienced with
the 8325-1 holder. The addition of the ashestos or fiberglass cloth on the endseals did not
improve the failure rate with the 8325-1 holder. In general, it is concluded that the 8323-1
holder, retained by the self-locking nuts, and without any cloth wrapping on the endseals,
provided the lowest lamp failure rate. This lamp mounting method, combined with a high-
ly damped reflector, is considered to be the best of the heater arrangcmems e\r&luated

*in this study.

Furthier experimentation in techﬁiques for holding the lamps is still needed. One

approach that might be pursued would be to mechanically uncouple the lampholders

from the reflector. This could be achieved with vibration isolators that would isotate

. the lamps in _thc'fmqucncy’ range where flament and cavelofe resonances exist.
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SECTION 4
SPECIMEN MOUNTING EFFECTS

Specimen mounting is one of the most important considerations in combined thermal/
acoustic environment testing. Even when the acoustic und thermal environments are gecurafe-
1y controlled, improper boundary simulation can iead to incortect loads in the test specimen.
The specimen mounting restrains oue or more of the degrees of freedom ut the points of
attachinent, and thereby significantly affects the specimen response.

In the following section, particular attention will be paid to panel structures. This is
done for ease of analysis and experiment: however, the methods developed here may be
extended to the analysis of more complicated structures. It will aiso be shown that in many
cases specimen response to a combined thermal/acoustic forcing function may be determin-
ed from the superposition of responses to the individual forcing functions. Where super-
position is valid, thc boundary conditions in the combined mvxmnmuxt may aiso be treated
separately.

Bequirements for a combined thermat/acoustic test generally tall in one of twu cate-
gories. First une may be required o test a specimen {0 a prescribed response level. Second,
an enviroament (service or modeled) muyy be specified. In either case, prediction of the
maznitude and wistribution of spacimen stress is :.mmu.sl to proper boundary design and
instrunyntation focation,

It is the purpase of this work-to examine the el¥ects of specimen mounting en panel’

“state of stros tn g combmed environrent’ Both analytivad and experimentyd technigues

ave discussed and information an {ree amd oot pancls s presented. Following the state-
metd of the goversing cquations, rc%p{bnw ter thermad and dynamic environments will be
discussed separaiely. Consileration of specit ten mounting w tie combined environment
will then be tixmmesk alang with o mzmwmi.mem fog cumdmg the methods \ieudnpcd
here.

4.1 GOVERNING EQUATIONS
The analysis of the general thermal idynamic stress problem can be aceompiished by
obtaising the sadution 1o the cleven governing cquations, These equations are the continuty
squstion, the cquationv ol motion, and the energy equation, and the constitulive vquativng
whach ase presented 1 Appensdix Cas Bguatzons (CHL (C2), (T3 and (CS), regpectivedy -
For purposes of ater analysis amd pencrahzation it will be conventiens to write the
governng equations in dimensionless form. Thc rollowing substihiitions will be made

tedval wom -0 A TR
& b v 1(‘ : '
g oab Voo ;;
q «* u‘~~--\ V’ s: Raed B
K T( ab /b ab
( o
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As explained in Appendix C, the assumption of negligibfe thermal rates due to me-
chanical motion and negligible sirain rates due to temperature changes leads to the quasi-
static thermoefastic theory. Under the above assumptions we find that the temperature
distributior in a body can be calculated from the Poisson equation for a steady state sys-
term. Letting q represent the heat generated per unit volume per unit time internally in
the body, the total heat flow to a specimen incluzding net absorbed radiation and con-
vect’ve losses mo* “e treated as the amount of heat flow required (q) to produce a given
temperatuse distribution. The temperature is then computed subject to the given bound-
ary conditions. For the case of the thin panels considered here, the 6, ” term is assumed
to be zero. Thus the Poisson equation can be written as

’"f+<"‘)2 I 4.2)
XX b/ b q ) . | s
The analysis of the state of stress for a panel subjected to a temperature distribution
calculated from equation 4.2 requires the sclution of the equilibrium and compatibility
equations. With the usual assuraptions of sma’l deflections of a linear, elastic material,
two methods may be employeu to reduce the required number of partial differential
equations to one. The two functions which may be employed are the Airy’s siress
function (biharmonic) and the strain {or displacement}) potential function (harmonic).
For the case of plane z‘ress the state of stress in terms of the siress function is specified by

Oxux O+ 2 3yyyy ¢ + dyyyy 0= aBB, T +3y,T) | {4.32).

Oxx =0y & Oyy =0y b Oy = =By _ (#.3b)

The state of stress in terms of the strain potential for plane stress is given in dimension-
less form by
- a\ o
i oly) ooy ¥ ) (P AT+ T +C @)

It is assumed, in equation (4.4a) that v? y and T are differentiable functions of x and y. The
strain poteutial and siress relations are then given by

b - a - . ‘
€T3 = g a)—o-( v, eyy = '{)‘ 2);,;, l,[/‘ 6)-('}7 =~ 26,-(3, ] . (4.4b)
and

- __E b - a - .

3)_(.)i = (l-—vz) [; a-)—(vx- w +l)g ayy ll/ - (1 f‘U)a F] (4.53)
__E _a -- b - R ,

U-yv = (1-—-1)2) {g a-qs; v +V~£ a-)-i-i Y- (1+)aT] {4.5b)
— E 3 m

57 * Ty 59 7 9

it can be shown, by applying the substitutions indicated in equation (4.1) to (4.3a), that
equation (4.3a) is the Lapacian of equation (4.4a). For ease of numerical solution in the
present discrssion solutions will be obtained using the strain potential.

41

T

M,,
SRR

i




R

=

s

R

T332

‘ “The in-plane fo;;cfas on a;i)anel may now be.determined by substitution #f equations
(4.5) inio the relations

2o

¢ I
: 2 2
N, =§" o382 N =f oy 32, Neyy=1" 6,082  (46)
X xx 94 ’
xx”f AR B XY " XY
7 2 2
The dynamic plate\ equation (equation C21) may be writtexi in dimensionless form as
a2 o\t .

_ 2
1202 a5 ¥ +v2 355 ¥ — (] (:—:‘) dex W+

2 7,0 2,02
- Jsc W tv—3__ I a a _ ‘
| {b 57 ¥ VT %z ¥ — (1)aT] (B) (Z) a5y W+ @
() aya\2 ) 120Peat 4o

2 () 7 s - S el

where the ¢ values are known from equation (4.4a).

On the basis of the preceding ¢quations, (4.1) through (4.7), the solutions to the
thermal and dynamic stress problems may be determined for a given dynamic forcing
function and damping value. Due to the complexity of the problem numerical, ~itions
to the thermal stress problem were obtained principally for free and fixed boundary condi-
tions on a square, steel plate. Experimental solutions were obtained for a boundary condition
between free and fixed. A determination of the effect of in-plane forces on the resonant
frequencies of a panel was obtained experimentally. Methods for extending this information

to other boundary conditions, shapes, and materials are presented in sections 4.2 through 4.4.

4.2 THERMAL EFFECTS

The governing equation used in the study of thermal stress in panels is equation (4.4).
Since this equation is derived by the integration of two equilibrium equations an arbitrary
constant is included. If the potential and its detivatives are taken to be zero at infinity the
constant is zero. There are, however, classes of practical problems which cin be solved con-
veniently by choosing a reference for the potential function at a point in space other than
infinity. In these cases it will be necessaty to retain and evaluate the constant of integration,
C, in equation (4.4).

Evaluation of the constant, C, requires the evaluation of the expression

2
— a - a '
a'xi Wy ot (‘b”) ayy (/AR (’t‘)) (+)aT=C (4.8)
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at some point X, ¥4 To do this equations (4.4b) are substituted into equation (4.4a) an_d

gfg'aluated at x,, v,
€33 +egu | - {1ty aTi. =C 4.9
XX E:xo Yy :\fz o ( ) {i‘::x() ( )
Y= Yo Y=V¥q Y=Y,

The following discussion wili be limited to square free and fixed panels with a constant
boundary temperature. It will be shown later that equation (4.8) may be applied to more
general problems but some additional calculation may be required. For the fixed panel it is
known that at the corners ey = €., = 0 and the temperature is Tg. Substituting these
values into equation (4.9) yields

C= - (14)aTp | .10)

Forthe free panel €y, und €, are both equal to «Tp at the corner and the temperature is
Tg. Equation (4.9) then becomes

C=(1-»)aTg K @11

The second part of the boundary value problem requires the evaluation of ¥ at the
boundaries. The general form of ¢ (X, ) is

¥ &T) =1 ®) +5 §) +3R) £ 7)+C 4.12)

For the free panel we have the requirement that the shear stresses, anu thus the shear strains,
are zero at the boundaries (equation (4.4b)). :

= 0 | . (4.13)

B

_Substituting equation (4.12) into the above expression and evaluating this at the boundaries

%! =1 and Iyl = 1 we have the condition

ogy ¥ ’B =0'3() @) =f'3® 4 (1)=0 (4.14a)
which gives
f'3(X) =0, f'4 (@ =0 (4.14b)
Iyl=1 %l = |
~1<RI<]1 -1 <y
thus
7 IB =f| ®)+6y (7) 4 C o)

At the boundary the nor.nal stresses must be zero. In terms of the potential function equa-
tions (4.5) become

a a . —
b Y| T Y

- (1+)aT({1,§)=0 “4.154)
xl=1 -

c i

dus ¥ +v
yl =1

= e

Iz ¥ ~ () aT &, 1)=0 (4.15b)

yl=1
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Substituting equation (4.14¢) into the above we have

%f"1(1)+v%f"2(y)=(l+v) 2T (1,9) (4.16a)

a
b

b
£'30) +2 = £ @)= (1) aT &, 1) (4.16b)

Solving equation (4.16) for fy anc ) at the boundaries we have for the constant boundary
temperature case

a(l+v) fl"(”}
2oy “T(x"”‘ 20

f2" (1)
- b(l1+v - 2 _2 -
fr (y)=[ 2( )aT(l,y) —-‘2—;—] y +CG3¥+(y (4.170)

£ (®) =[ XTHCiREC) (4.17a)

av

where { 1 "(i) fy (1), Cy,and C3 are unknown constants to be evaluated from the
boundary conditions for the known temperature distributions. C, and Cy are arbitrary
since the potential is only known to within a constant. Solving equation (4.17) for the case
of a square panel with a constant boundary temperature, Ty, we have upon substitution of
the second derivatives into equation (4.15)

£ (1) =15 (1) = (1-») aTg ‘ 4.18)

Applying the condition of zero rigid body motion we have Cl = C3 =0 in equations (: 417).
Thus the potential is "

B B :

Since ¢ (X,¥) can only be known to within an arbitrary constant we can assign a value
to a point. In this case we will assign a zero value to the midpoint on a boundary. This
results in a value of ~aTg/2 for (C4 +Cy).

For the fixed panel the boundary conditions are that the displacements at the bound-
ary are zero. :

i v v = (4.20)
vl =1

Applying these conditions to equation (4.12) we have
£y ®) +f'3(®) g (D=0 . (4.21a)
f'y @)+f3 (D' F)=0 (4.21b)
Integrating and combining like functions results in
@+ M3 X)~-Cp=0 LigX)=Cy (4.224)

£y G)+63 (1) {4 G)-Cp=0 =15 F)=Cy (4.220)




where { 5 &)=f 1 X))+ f4 {1 f3 {%X)and similarly for f6 (¥). Since Cl and C, are arbitrary ‘
constants they can be given zero value yielding

v &) =0 - 4.23)

For the free and fixed square panel with constant boundary temperature we can now deter-
mine a function ¥ which satisfies equation (4.4a) and the boundary conditions given by
equations (4.10) and (4.23) or (4.11) and (4.19). From potentiai theory, it can be shown
that with ¢ known on the boundary, the function obtained undesthe above condltlons

is the unique solution.” There are several methods for the solution of equatlon (4.4a). For
simple temperature distributions and classical boundary conditions, closed form analytical
solutions are availabie. For general temperature distributions and various boundary condi-
tions two other methods of solution seem preferable. One method is the numerical analysis
of equation (4.4a). The other method consists of a combination of experimental, numerical,
and statistical techniques.

Three techniques may be employed in the numerical analysis of equation (4.4a):
numerical integration, finite elements, or finite differences. In the present study the finite
difference technique was employed due to its compatibility with the low storage time shar-
ing computers and the existence of several applicable algorithms for the solution of elliptic
equations by finite differences. As shown in the literature,”“ the solution to the finite dif-
ference representation of the second order, elliptic equation converges uniguely to the
solution of the partial differential equation. The finite difference solution is the super-
position of the homogeneous and particular solutions. A description of the computer
programs used in solving this equation by the finite difference technique is given in’
Appendix D. Once the program has been developed solutions may be obtained quickly
and economically; however, each case requires an individual solution. It is often desirable
to have an indication of the variation of the stress for a range of independent parameters.
In this case a few computer and experimental solutions may be combined with any of
several statistical techniques to yield design curves giving a reasonable approximation to
the actual stress response.

The form of T for the nonhomogeneuus portion of equation (4.4a) will be taken as
TE T =Ap +Aglxl+Ag]52 + 4,133 + aglz4]
_1.<3x< 1 -zl <3 <] (4.24a)
TRV =Ap +Agl 7]+ A3197 + A4153] + A5 |74
~1.€y< 1, -yl <x<lyl  (4.24b)
This form of temperature distribution is symmetric with respect to the x and y axes and
has a constant boundary temperature. Forming the dimensionless temperature raho T
equation (4.24a) becomes
TR, 7)= Ay (X ~1) +Ag (X% 1) + Ay (1%13-1) + K5 (I%14-1.)
-1.<X <1, ~-RKISy<I|X . (4.25)

where A2 As/Aq, A3 A3/A |, etc. A similar expression for equanon (4.24b) can bc
written. The normalized center temperature is then

To= Ay - Ay — Ay —~ Ag - 4.26)
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" ture distributions of quadratic and higher order the maximum stress is not in the center

Since stress is the response parameter of interest we would like to find 0 =0 (X, ¥, T). Mak-
ing the substitutions indicated in equation (4.1) in the expression for stress (equation (4.5))
we define a dimensionless responseparameter as

0-—- —
-._._..aa,(xpo)E ay V,l/
Ox (I'YET (D) -1 ‘ 4.27)

with similar expressions for G-. Since ¥ depends on the coefficients of the non-homogeneous
portion of équation (4.4a) and the boundary conditions, equation (4.27) can be written in
parametric form as

G =0 (Al —. v, boundary) ' (4.28)

Particular attention will be paid to the center stress parameter, G, as a function of & for
afb=1.0,»=0.27, for free and fixed boundaries.

The initial intent of this study was to apply the statistical technique known as Latin
Squares (o determine the relation between Gand T.* < !° However, a few solutions to the
thermal stress problem indicated that for the above type of symmetric temperature distri-
butions and boundary conditions, G varies linearly with each coefficient, A1 In this case
the use of a tool as powerful as Latin Squares is not required. For problems where the
functional relationships are more complicated the Latin Squargs technique should be
employed. The value of G¢ for a temperature distribution which is a function of more
than one coefficient is found by the superposition of the solutions to the various single
coefficient problems. Computer solutions of 6 for various values A, for free and fixed

.panels are presented in Tables 3 and 4, respectively. The values and locations of the
maximum stresses are also presented. For each case where the temperature distribution
was purely linear, quadratic, cubic, or quartic a least scares poiynomid! fit of Fic vg /
was performed. In each case the form of the potynomdal was G = G A+ Dy For tln. case
of a fixed plate the C are all 0.626 and the D; are 1.0 For the free plate, C’k =-0372

- and D;=0. As noted in equation (4.26), T 2, - A so each plot for T having oniy one

non—nro coefficient is also a plot of G vs ’l 'I'he a( vs T. o ourve - for both-the frecand
fixed panel are presented in Figure 17. 1t should be noted that fm T. =0, the constant
temperature case, there is zero stress in the free panel and 6¢ = - s"I /1 v for the fixed
panel. Waen T = 1.0, Ty = ambient, the p:md responds as a ﬂxud punel regardless of
physical bounuary conditions and 8¢ is -- (1 -»)/2. Cases 11 and 12, Table 4, for the.
fixed panel and cases- 14 through 16, lablc 3 for the free panel verify that app} ying T =

p I Ax and the equations for @ vs T yields the same avalue as thu sc,}utmn of syuation

(4.5).

The results of the analytical studies shown in Tables 3 and 4 indicated that {or tampera-

“Temperature and stress distributions tor the fixed and free panels for first through fourth
order temperature distributions are presented in Figures 18 through 28, The shape of the
stress distribution shown for the higher mdu distributions was .ue,u obscrved in the ex-
perimental mvcsugatnons.

In addition to the analytical studacs 4 thv.,mml test was comluuted on'a l S-nchesquare,
stainless steel pancl. The tes* setups used for the simulated free and fixed boundary tests are
shown in Figures 26 and 27, respectively. Heat was apphcd to the panet by the quartz lamp
and reﬂector arrangement shown in the figures.
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FIGURE 17
THERMAL STRESS RESPONSE
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§ FIGURE 18
_ THERMAL STRESS DISTRIBUTION
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FIGURE 20

THERMAL STRESS DISTRIBUTION
FIXED BOUNDARY CONDITION
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FIGURE 21

THERMAL STRESS DISTRIBUTION
FIXED BOUNDARY CONDITION
4th Jrder Temperature Distribution _
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FIGURE 22
THERMAL STRESS DISTRIBUTION
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FIGURE 22

THERMAL STRESS DISTRIBUTION
FREE-FREE BOUNDARY CONDITION -
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FIGURE 24

THERMAL STRESS DISTRIBUTICN

FREE-FREE BOUNDARY CONDITION
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FIGURE 25
THERMAL STRESS DISTRIBUTION
FREE-FREE BOUNDARY CONDITION
4th Order Temperature Distribution
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FIGURE 26
TEST SET UP FOR FREE PANEL
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FIGURE 27
TEST SET UP FOR FIXED PANEL
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Temperature and strain data were obtained at several points on the fixed-edgé 1 iegz\panei

A least squares polynomial fit was performed on the centerline temperatures and the coeffi-.
cients were normalized to obtain the A values described in equation (4.26). The Te C value
_calculated in this manner is compared w1th TC obtained as (T — TB)/TC using an average
boundary temperature. The results are summarized in Table 5. During the initial low tempesa-
ture thermal tests the stress data for the experimental panel was consistent with the theoretical
values shown in Figure 17. During the high temperature tests the experimental boundary was
substantially less stiff than a fixed condition as shiown by the fact that the strain at the
boundary was approximately «Tg/2. The boundary strain for a fixed panel would be zero
while the boundary strain for a free panel would be oTp. A least squares analysis of

oo vs TC for the high temperature tests on the expenmental panel is presented in Table 6.
The results of this analysis are shown in Figure 28.

The techniques used in this section for determining the stress distribution due to thermal
effects can be powerful tools in analyzing actual laboratory cases. As shown previously, for
simple experimental cases, a good estimate of the actual stress experienced by the test panel
can be obtained by utilizing normalized polynomial temperature distributions. A few experi-
mental cases may then be run to determine 6¢ vs T . For variable boundary temperatures
and difficult boundary conditions equations (4.4a) and (4.9) must be solved for C and
Wboundary» respectively and these values used in the computer programs shown in Appendix
D. If, however, the boundary can be assumed to be close to one of the conditions studied here,
Figure 28 may be used to give an approximate center stress. Tablés 3 and 4 also give an indi-
cation of how maximum stress varies with increased order of temperature distribution.

To verify the accuracy of the technique described in this section a comparison was
made between the closed form solution of the rectangular plate problem (shown in Figure
29 and described in reference 14) and the solution obtained by the finite difference solution
of the strain potential equation. The plate in this case is free to expand in the y direction.
The boundaries at x = + b/2 are placed in the “free” condition by the application of a stress
in the x direction of Za'ETO/B, according to Timoshenko.

At the corners we have the conditions

Oyx = 2aET0/3, Oyy =0 Toorner =

Solving equations (4.5a) and (4.5b) for €yx and e, and substituting into (4.9) the constant,
C, is found to be 2(1-»)aT,/3. We assume § to bé of the form given in equation (4.12).
The values at the boundary then become

b = fl (%) +f’v (Y) + f3( ) 14 (y) (430&)

0. 4.29)

""yzi = (’0“2(2)”3 (x) f4( ) (4.300)

The boundary conditions are

Oyx = 2aETo/3, Oyy = 0 4.31)
at
+b + &
x=t=,y=t=
22 y 2
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TABLE &
EXPERIMENTAL THERMAL STRESS DATA ANALYSIS
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FIGURE 28
THERMAL STRESS RESPONSE
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FIGURE 29
RECTANGULAR PLATE MODEL
CLOSED FORM - FINITE DIFFERENCE COMPARISON
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Substitution of equations (4.30) and (4.31) into (4.5a) and (4.5b) will allow solution for
the functions f 1> T2, f3, and f4 to within a constant. Applying the requirement that the
values of y given by equations (4.30a) and (4.30b) be the same at the corners allows
evaluation of the arbitrary constants. The values of ¢ at the boundaries are then given by

_ U)aTy 5 2v2\ vaT
y< i- -—-——2- - [¢] y2 —
.% 2 3a 3 {4.32a)
S(Hv)aTo a2 v:xTo a2
+
48 2
' _ aTO x2 aTO b2

y= i% 3 12 ' (4.32b)

Solution of equations (4.4) through (4.5) subject to the constant in (4.4) being
2 —v)a:To/3 was accomplished by use of the computer programs presented in Appendix
D. Table 7 lists the results of this analvsis compared to the closed form solution,

_2 4y2 _ _ ,
Ogx 3 aET (XETO (1 - "a—,z‘), Oyy = 0 . {4.33)

In this case T, was taken as 5387.99F, thus for a steel panel o ET, becomes 1.00 x 100,
The error in the values of 0, are obviously due to truncation of the decimal values of
improper fractions. The error in g, is due to the method of computing strain which re-
sults in taking the difference of large numbers, The accuracy, if roquired, can be improved
by using double precision arithmetic, increasing the number of iterations in the potu\tm!
program, and using a finer mesh in the finite difference routine,

Substituting the closed ferm solution (4.33) into cquations (4.5a) and (4.5b) and
solving for strain we find that the sum of the strains minus (14) % T atany point in the
plate is 2(1 ~v) T, /3. This is the constant of mtugratxun evaluated from equation (4.9)
and the boundary wndltxons at the corners.

For commonly encounteted boundary conditions and materials it is recommendad
that the techniques developed previously be used with a statistical method suctias Latin
Squares to extend the design information presented here. For defails on the use of Latin
Squares the reader is referred to references 11 and 13. 1t i suggested that a four Jevel '
Latin Square plan be used to determine Tg and Gy, a5 3 function of T, ab, and bound-
ary stiffness, The variation of @ with the parameter » need not be %onsxdami since it is
approximately the same for most engincering materials and Ef1 ~#* is contained in the
parameter . The boundary stiffness may be determined either gualitatively or quantitatively.
‘The stifthess used in the analysis must be son<limensionslized to an appropriate value. An
example of a four level Latin Square design for detcrnumng @ as a function of boundary.
T, and 2/b is shown in Figure 30. This analysis requires 4201 16 experiments as compare{!
to'4” or 64 experiments for a conventional analysis of variance.

The vailues nf(‘il {+ 0y, 4nd 5y 4 are obtained from Figure 28. Th. values of G Z"»l a3y
Tq1.0 34 034, and dg4 may be obtained by using computer programs presented in Appendix
D. The ) remaining oy, ; may be determined by experiment or numerical solution as described
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in references 11 ar .. (3. The partial responses

= (T), oc = f(KT), O = f (a/b), and the

total response o = f (T, KT’ a/b) can be determined from statistical techniques. If it is de-
sired to find Gy, as a function of T, K. and a/b the form of T may be another independ-
ent parameter in which case a Greco-Latin Square would be used. This would require 43 or
64 experimcats instead of 250 for the conventional analys.s of variance,

The results of the above analysis woutd provide the design curves necessary for the
selection of boundary stiffness to induce the proper stress level. For a giver U~ iaary an
estimate of the center and maximum stress for a given temperature distribution could also
be obtained from the design curves.

4.3 DYNAMIC EFFECTS

The solution of the dynamic stress problem requires the solution of the following

eruations:

3 bl
k ¢ - — ¢ —
o Ll SR gy vy (. 342)
E CT o el .
2G50 g W (4.340)
o« U2 R b ’X)‘ s R

Thus for known material properties the stress can be determined when the defiection, ;}-y

1 Known.

The fiest step in obtaining the deliection, W, requires the solution of the dypamie plate
equation (8.7 The values of Newr Ny Ny aF¢ given by equations (5.3 and €5.00. 1{ 1«
evident that the thermal stress problem must be solved prar o sedving the combunad
dynamas amid thennal problems. From equation (4.7) the parameters that affect the undam r

ed mede shape for free vibrations, &, are boundary vonditions, b ol rand \p_.;“
wh Co) This last parareter s of special mferest © e ta the wy U In general wp i

L2
“n

not kacwn ang in {act may be vonadered ay 4 dependent vanable which 15 ¢ fusction of the
made shape. in-plane forces, boundary conditinms, geomitae 4nd mawria!‘pmpsrum 1t
will be canvenient to mutiply the dimensionfess parsncict contaning Wby 1201 v=tta
viehd zx:‘.“"%g%i Cr2l wypa™) The torm i hrachels vait be consitered as the naturz
frequency of the panel at amhigm feanperature divided by s constgnt, Thus we write this

-

: oD
dimensonless paramieter as wi ST T ambient. The valus of C= for vanous boundan
conditims, materials, and /b ratios w readily available in tie iitersture, | $.1€

For 7ero in-plane farves wyy 18 the frequensy miven by egauation (C19yand foy increas.
ing comprassive loads why i decreased to zero at the frst aritical buenhing load. Since equa
Gon (471 is a homogeneous cyuation the previousty emploved finste difference technigue
vields only the tnvial sodulion w = 0 However, a number of cainpuier programs arc avalk
ztde in the industry for computing G and wofor vanous structucal ma les Most of these
programs require only the geometry and material propertics as tnput. A lumped paramcter
mass and stiffness maliix is then generated uang sohmiques such as the fuite element
technique. The values of w are then obtained a< the sipeRvestors and w as the eigenvalues
of the dynamic matsin by one of several numehical techngues.

6l
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The main problers with this type of solution is accounting for the thermal loads.
Equation {C20), Appendix C, rewritten in the form Ma,yx+Kx=0 becomes

1

N

¢ { : .
pody WD {axxxX w+29 L Oy We2Nyy dyng N id

xxyy Tyyyy “’] ”{

4.35)
From this it is apparent that the expression in braces is a stiffness term. Thus it would be
neces. ary to modify finite element programs such as the McDonnell Douglas Automation
Company dynamic analysis program to provide for a reduction of the terms in the stiffness
matrix ! , a matrix determined from t* s involving Ny; 9;; w. It may also be possible
to use a modified form of the current. - .puiar NASTRA program.l

Although the above modified programs would provide a solution to tuc dynamic
equation including in-plane loads, it would <*ill be necessary to use a large number of
elements to obtain reasonable accr.tracy.1 8. .ithe experimental 15 inch square panel, if
elements are taken every inch (fairly large increments) the stiffness and mass matricies are
15 x 15 for only one degree of freedom. The size of iiie matrix is increased by 15 per side
for each additiona! degree of freedom. It is obvious that the storage limitations and cost
soon become limiting factors. Single runs of the above mentioned programs, not modified
to include thermal loading, may cost several hundred dollat..

The cost invelved in the numerical solution and the lack of closed form solutions for
equation (4.7) indicates that either experimental solwtions or combined experimental-and
numerical solutions should be employed. Mapping mode shapes in the combined thermal/
acoustic environment can be an expensive and time-consuming process, thereby making
experimental determination of w difficult. One possible, low cost method of obtaining de-
sign curves for .'on“/Czwn ambient ¥ the independent parameters is to experiraentally
determine the vawes of w, for various high temperature cases. In some cases,
sech as simply supported polygonal plates with constant in-piane forces, the mode shape
is independent of the magnitude of the in-plane load. Thus a computer solution or experi-
mental mode mapping is not necessary. In cases where the mode shape is not known from
the literature it may be necessary to perform a ground vibration test to determine the
modal response. Normalized mode shapes can then be computed from the measured data
and the mass matrix. Equations (A4) and (AS5) relate the normalized mode shapes and, the
natural frequencies to the mass and stiffness matricies. It is these matricjes which must be

known for the elevated temperatuic case. The generalized mass and stiffness matricies are
then given by

~1
(M] =[o]T } (] (4.363)
(Kl =[21T  [ep2 1 (@) > (4.36b)

It shiould be noted here that two important assumptions have been made; first, it is assum-
ed that the method of excitation and measurement does not effect the normal modes;
second, the damping must be small so that the mce shape computed from tho measured
data is the same as the undamped normal mode. It is recoinmended that measured modes
be checked for orthcgonality to test the accuracy of the above assumptions.
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Once the system characteristics have been determined either vy one of the finite
element computer prograins or the experimental methods described above the deflection
can be determined for a given forcing function and damping value by the methods present-
ed in section 2.2. This section presents methods for deterrining the deflections which must
be substituted into equations (4.34) to obtain stress in terms of the coupling between the
structure and the given acoustic field.

In the present experimental study a plate with both tree and fixed boundary cendi-
tions was subjected to acoustic loads at ambient temperature and at a nominal 450°F plate
center temperature. 19 The experimental test setups for the free and fixed panéls are the
same as those for the static thermal tests (Figures 26 and 27). Mathematical models used
in the ambient temperature mndal analysis for the free and fixed panels are shown in
Figure 31. The mode shapes and natural frequencies from the anaiysis and experiment
at ambient temperature are presented.in Figure 323 for the fixed and free panel. The
experimental frequencies shown are the resuits of vibration excitation since some modes
could not be excited acoustically and mode mapping was not convenient in the acoustic
environment. However, these results give an indication of the quality of the dynamic
boundary conditions. Frequency shifts during acoustic testing from ambient to 450°F
center temperature are shown in Figures 33 and 34 for the free panel and Figures 35 and
36 for the fixed panel. Table 8 summarizes the frequency changes and the percentage
frequency shifts. As shown in the table the average reduction in natural frequencies was
3.4% for the free panel and 9.4% for the fixed panel. A reduction of §.0% in Young’s
Modulus due to temperature would account for a 2.2% reduction in natural frequency.
Thus a 1.2% and 7.2% decrease in frequency in the frec and fixed panels can be attrxbuted
to the effect of in-plane forces.

44 THERMAL/ACOUSTIC MOUNTING

The preceding sections heve shown how thermal stresses and dynamic stresses can be

analytically evaluated in a sonic fatigue test specimen. The importance of the suppbrt

structure for combined thermal/acou:tic loading is apparent from the governing equa-
tions. Int designing a mounting for testing panels in the combined environment, one
must consider both the thermal conditions at the boundary of the panel, and the
mechanical restraint imposed on the edges of the panel. The.remainder of this section
will discuss specimen mounting designs, starting with the thermal aspect of the
problem. After the method for controlling the boundary temperature has been
estabiished, one may proceed to the design of a mechanical boundary that will produce -
the desired thermally-induced in-plane loads. Finally, attention may be directed to the
design of panel edge res*raints that will result in the proper panel frequenciz, and mode
shapes.

The first part of the boundary synthesis problem is the design of the thermal boundary.

The specification of boundary temperature and qwill determine the temperature distribu-
tion. Maintaining the proper boundary temperature may be as important as the physical
stiffness of the boundary. As described in section 4.2, even a free panel with boundaries
maintained at ambient temnperature will have the same thermal stress as a fixed panel.
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FIGURE 31
FREE-PANEL COMFIGURATION FOR ANALYTICAL STUDIES
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FIGURE 32
FIXED PAMEL MODAL CHARACTERISTICS
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FIGURE 33
ACCELERATION RESPONSE
FREE-PANEL
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_ | FIGURE 34
; | | ACCELERATION RESPONSE
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FIGURE 35
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Norrnalized Responsé
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. FIGURE 36
ACCELERATION RESPONSE
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TABLE 8
CHANGE IN NATURAL FREQUENCY OF PANEL DUE TO THERNMAL EFFECTS

Frea Panel

Fixod Panel
Ambient 450°F Percent Ambient 450°F Parcent
Frequency (Hz} | Frequency (Hz} Change’ Freguaney {Hz) | Frequancy (Ha2) Change
190 190 0 560 490 109
380 %0 7.1 1100 1000 © 9.
960 850 0 1600 ' 1500? -
1600 1850 3.1 ;1860, 1600 1.1
1800 1800 53 :
Average 34

94

27




There are several metnods available for controlling boundary temperatures. A massive
fixture with good thermal conductivity will act as 2 heat sink which maintains ambient
boundary temperatures. This method of controlling boundary temperature is particularly
applicable when dynamically fixed boundaries are required to be maintained at ambient
temperature. Convective cooling or heating, where a gas or liquid is forced to flow over
the boundary, may also be used. This method requires a good analysis of the convective
heat transfer problem to determine proper flow rates, contact areas and fluid temperature,
Care must also be exercised in the attachment of hardware to control the fluid flow since
the in-plane and bending stiffness of the boundary may be affected. A third method of con-
trolling boundary temperature is electrical resistance heating of the boundary. In this case
the specimen must be electrically isolated from the boundary but have good thermal contact.
Several materials with these properties are available commercially, such as cupric oxide ce-
ments. In each case, boundary heating due to radiation from the specimen, lamp banks, and
reflectors must be accounted for or the boundary must be insulated against radiation from
these sources.

Once T(x, y) has been established with the boundary controlled at a constant tempera-
ture T, the valve of T ¢~ (Figure 37) may be computed. As shown in section 4.2, if small
gradieats exist along the boundary, use of an average boundary temperature yields satisfac-
tory results. The next problem is to design a mounting such that the in-plane stiffness at
the boundaries produces the desired static stress. To examine the possible stresses which
may be developed in the panel we observe the stress limits shown in Figure 37. As mention-
ed in section 4.2, when the boundary temperature is ambient (Y = 1.0), the center stress
is independent of the in-plane boundary loads. The value of the center stress for the ambient
boundary temperature case is given by —(1-»)/2. Thus for a given valuc of v, a plot such as
lhc one in Fizure 37 can be constructed. The points on the G axis have e range ~1.0%

« 5 0. These points represent the possible in-plane boundary stiffnesses from infinite to
zero (fixed to free). As shown in the figure for values of & 0>~ (- -»)[2 a gradient
(T ¢ > 0) will increase the magnitude of the center stress, For values of © Gc < (1=p))2n
gradient will result in a decrease of the center stress. As shown in Figures 18 through 25
the stress at points other than the center iy a function of the order of T(x, y). The curves
in these figures show two significant chardcteristics: the form ot the stress distribution is
independent of the boundary condition, and the niagnitude of the stress at 4 point is
retated to the stress at the same point in the free-boundary case by an additive coustant.
This constant depends on the in-plane stiffness of the boundary.

Figure 37 can be used to design the mechanical boundary to produce a given thermai
stress in a panel. The value of Ge as a function of T ¢ fora given boundary is determined by -
a straight line witich lies between the lines 3¢ = - ((1 -~v)/2)TC and G = ~1.0 +((1+2)/2) T C-
Since each line must pass through the common point (3¢ = ~ (lwv)/2 T 1.0) the line for
a given mechanical boundary is compietely determined by the spmhcatmn of G- at T c=0
The value 6 ac at T( 0 establishes the center stress for the constant temperature case. This
stress, however, is the stress at every point in the panel including the boundary. Thus, if
we are given T = 0.5, a desized center stress of —0,48 aET/(1-v), and wish to design
a boundary which will produce this result, we proceed as follows: A line is drawn through
the points Te = 0.5, G = ~0.48, and T¢ = 1.0, ¢ = - (1-»)/2. Th= point where -
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FIGURE 37
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‘(amount of torque on picture frame boltsi to fune the d«.mwd natural frequenisies at the -

this line intersects the TC =0 axis then found. Ia this case the intercept has the value e =
—0.6. Substitution of o, Boundary = -0.6 « ET/(1 ~v) inte the generalized Hooke's
law (equations 4.5) ylelds a va¥ue of 0.4 a T for the stmm 4t the boundary, Thus 60% of

the free boundary strain, o T, must be: suppressed. To do this a load per unit length P

must be applied to cach boundary where o , : - .

C
szo dz= .6 «ET¢ c/(1-#) _ 7 L @AT
- € | ' o
2 -

One method of accomplishing this loading is to spring load the pancl edges. Keepitig
the spring at ambient temperature the spring ¢onstant may be determined from the load and
deflection. In this case the detlections, u and v, for zero panel rotation or trovslation, »re
0.2 a'Fea. The spring constant per utit length must then be 0.3Ec/agl- #1 The problems
invoived in designing such springs for combined environment testing will be discussed later
in this section. If the temperature distributions are not of the form discussed in section 4,2

it is suggested that the computer analysis described in that saction be wsed to cheek the

stress distribution tor the designed boundary.

The problem of designing a sechanical boundary to controlb the dy namic responss of
a panel is not as straightforward as the static case, White the boundary problem is one of
producing u given bending stilfness at the boundary, the dynamic seronse i depea fent ol
the in-plane thermal Toading, damping, and coupling with the acoustic field, The cesigner
fuas the option of controlling the pane} mounting, the acoustic fiecki or both to produce
the desiced dynumic stress. ' '

The basic probiem in direct boundary synthesis (and snalysis) is the determination of

_ stress as i function of mode shupe and frequency . Thus control of the acoustic Reld is

generally the vasier method of producing a desired dynamic stress level. I the scotistic

- field is to be the controlled variable, a dynamic boundary umv be sclf:c(cd on aixc basis of

memww sod case of analysis.

In the prr'.sem study, fixed and free houndaries wore designed. The design of thhe fixea
boundary wiy based on the information preseited in Reference 19, The free boundary was
sirlated by laying (he panel on thermal msulating matesial with low damping and low
transtational stiffness. The panel was kept from rotating o transiating as a rigid body by
the application of fibenglirs tape to the pancl edges. The tape also prevers=d the thermal A
insulation from being disturbed by the air flow from the acoustic source. In both cases, dw
experimental boundaries resufted in frequencies end mo-de shapus closely a;spmxrmimg
the analytical predictions. : .

Another mounting technigue which proved successful is the & pg\?.&atiﬂé"!ﬁ“ Ladeding e
straint (dynasmic boundaries) after the test specimen is 3t the desired temperaivre. The
specimen in this case 15 allowed to expand og rollers placed at the boundary. Aftes the

‘desired temperature is reached the edges may be restrained by m't*m:‘mg the bolt i a

picture frame type mounting. A mounting of this type is shown i Froare JR-Some con-
trol over the dysamic response can be achieved by using tie variable dywartis rostraint

high temperature condition. These frequencies: wculd be tuned 12 ;»miuw the acoustic
coupiing required for the given sivess level.
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Although the design of specimen mountings has teen approached as the superposition
of three independent boundary designs it is obvious that the three boundaries do interact.
In some cases the interaction of the three bouadary conditions cin be used to the designers
advantage. For example il *he boundary is to be at ambient temporature and both the bend-
ing and in-plane stiffness is to be large, one mussive mounting fixture woula satisfy ali three
conditions. In other cases it is difficult to obtain certain combinations of the three bound-
ary coaditions. 1t i3, for example, difficult to obtain a statically fixed and dynamically free
boundary since pitysical methods of in-plane loading usually introduce sone bending
stiffness. Two design consideritions chould be included In most combined environment
mountiags. First the static and dynamic boundaries should either be isolated from the
thermal environment or maintained at a constant, known temperature. Second, where
interaciion between the static and dynamic boundaries is a problem, priority should be giv-
¢n ta proper stotiz boundary simulation siffce the dynamic siress can often be vontrolled by
control of the acoustie ficld.
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SECTION 3
SONIC FATIGUE INSTRUMENTATION AND MEASUREMENTS

Simulation of the theninal/acoustic environment and proper mounting of the specimen
within this environment are predominant factors in clevated temperature sonic fatigue test-
ing. Mcusurement of the test conditions and monitoring the response of the test specimen
are matters of no less importance. Consequently, ong phase of this program was lo study
methods Lo measure the parameters of interest in combined environment tests. The study
consisted of determining the availabifity of instruments to make the various measurements,
and indicatizg the advantages and limitations of different types of devices. The following
parts of this section discuss sonic fatigue environment and response measurements, and
methods for detecting sonic fatigue cracks.
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5.1 SONIC FATIGUE MEASUREMENTS

Elevated temperature sonic fatigue tests require a number of measurements. The most
basic parameter is the acoustic field itsell, Of almost equal importance are the temperature
conditions and the response of the specimen undergoing test. Surveys of devices to make

these measurements were conducted as part of this study program. The results of these
surveys are sunumnarized below.

e EANYLA R VLD LA  an

5.1.1 Acoustic Ficld Measurements

A number of good transducers are available to measure high intensity acoustic noise

fields. The transducers operate on a variety of principles, including piezoelectric, strain

. gage, capacitive, inductive, magnetostrictive, and pressure-sensitive semi-conductors. Each

: of these devices has a metallic diaphragin upon which the acoustic pressure impinges, and
the resuliant foree is converted into an ~lectrical signat through one of the above principles.
In selecting a pressure transducer for a specific application, the user must recognize that
high sensiiivity and wide frequency range will be difficult to obtain in a single instrument.

: High sensitivity results from a low stiffness diaphragm, but low stiffness also contributes

to a low resonant frequency. Therefore, a trade-off between upper frequency range and
sensitivity must be made in all types of pressure transducsrs,
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~ Piezoelectric and capacitive transducers are generally usable to temperatures in the ;
SO0OF range without external cooling. The change of sensitivity with temperature is 5
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condence. Above S00VF, external cooling of the transducer is generally required.
Some devices are being developed with materials that can sustain higher temperatures,
but the use of cooled transducers is more reliable at the present time.

Several methods of cooling pressure transducers are employed. The most common
method requires that a coclant fluid be circulated within the transducer to maintain the
sensing element at some specified temperature. Another scheme is to build the transducer
into a heat sink which is then cooled, Some transducers are mechanicall, solated from
mechanical members that experience high temperatures, and are cooled by a flow of
air or some other gas between the transducer and the high temperature envirown. tent. When
a cooled transducer is used, special attention should be given to the noise generated by the
cooling system. Likewise, the amplificr used with the pressure transducers must have a noise
level that is sufficiently low to permit measuremnent of the required acoustic levels.
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Another concept evaluated during this study was that of coupling the acoustic ficld to
a pressure transducer through a small tube. In the case of elevated temperature sonic fatigue
{ests, this miethod would permit the pressure transducer to be located away from the ele-
vated temper.ture environment. A rcliable room temgpsrature transducer could then be used
to measure the high temperature acoustic field. Some cooling of the coupling tube might be
required, but this could be easily accomplished.

The limiting factor in the use of a coupling tube is the frequency response of the tube.
The behavior of the tube can be analyzed by considering the pressure transducer to be an
infinitely stiff termination of the tube, as shown in Figure 39, Such an arrangement is
similar to the closed-end tube discussed in Section 2.1. The pressure at any point X in the
tube {with che x=R point taken as the “input” to the tube}is given by

Ps

p(x) = — cos kx (5.1)
sin k&

Although equation (5.1) neglects losses, it i5 adequate .o show the limitations of the

coupling tube. The equation js readily evaluated at the termination and input points, x=0

and x={ respectively. Finally, the gain of ine tuve is found by taking the ratio of the pres-

sure at the transducer to the pressure at the input, yielding

po) _ I
p(?) cos ke 5.2)
where ' .
2 w .
(= ;\-— = ’c' (5.3)

At sufficiently small values of k€, cos k? = !, and the transducer piessure is approxi-
mately equal to the input pressure. These conditions are only met, however, for {reauencies
at which the tube length, 2, is much smaller than the acoustic wavelength, The variation of
gain in the tube is plotted in Figure 39 for two representative tube lengrhs. At frequencies
where k& equals odd multiples of 90°, equation (5.2) indicates that the ratio approaches
infinity. The losses in an actual tube, however, will always limit the pressure ratio to a
finite value. Even with some losses in the tube, it is apparent that the use of coupling
tubes shonrld he limited to low frequencics, This restriction reduces the usefulness of
coupiing tubes for sonic fatigue tests, since sighals up to several kilohertz must ordinarily
be measured.

Calibration of pressure transducers for use on elevated temperature sonic fatigue tests
can be accomplished in several ways, The reciprocity technique yields the most accurate re-
sults, because it requires only the measurement of electrical quantities and distances. This
method can also be used at clevated temperatures, since the variation in the physical proper-
ties of air can be determined for elevated temperaturcs. Comparison calibratiors, using a
known “reference” transducer, are also suitable and widely used. A less common calibration
method is the use of a shock tube, in which a pressure step-function is applied to the trans-
ducer. For those transducers whose bandwidth extends down to zero frequency, a staiic
pressure calibration can be used to establish the transducer’s sensitivity. Knowledge of the
transducer’s resonant frequency and damping are then needed to extend the frequency
range of the calibration,
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Measurement of the acoustic field in elevated temperature sonic fatigue tests can be ac-
complished with currently available transducers. At temperatures above 500°F, transducers
with external cooling should be employed. Properly selected and controllcd co. ling methods
will result in reliable acoustic field measurements throushout the temperature range of sonic
fatigue tests. As transducer manufacturers continue to develop inaterials that will sustain
higher temperatures, pressure transducers will become available that can be used, uncooled,
beyond the temperature limits of current instruments. '

5.1.2 Sonic Fatigue Strain Measurements

A knowledge of the state of strain in a sonic fatigue test specimen is a basic factor in
evaluating test results. The measurement of such data is difficult in the combined high
temperature/acoustic environment because this environment imposes detrimental elevated
temperatures and dynamic acceleration loads on the strain gages. To determine the avail-
ability of strain gages for sonic fatigue applications, a survey was made of strain gages
currently on the market. Significant findings regarding the properties and applications of
strain gages are suminarized below.

The use of strain gages at elevated temperatures is subject to errors from several
sources. As one example, the resistance of the strain gage material may change as a
function of temperature. In addition, there is usually o differe:  hetween the thermal
coefficients of cxpansion cf the strain gage material and the maw. ! which is being meas-
ured. The elastic moduli of the test material and the strain gage material are aiso subject

to change as a function of temperature. To account for errors from these and other factors,. ~

strain gages must be compensated for temperature variations, according to the spepific
materials on which the gage is installed. An alternative to compensation is calibration of
the strain sensing system throughout the load and tempcrat ure range of intended u\ag\,.

Several methods of temperature compensation may bw employed. A common 1mthod
employs a second strain gage (dummy gage) which is expoged to the same temnperature
environment as the gage of interest (active gage) without-applying the actual strain condi-
tions to the dummy gage. The temperature-dependent output of the dummy gage can thus
be used to cancel out the apparent strain indicated by the active gage. For sonic fatigue
applications, this method is limited by the difficulties in locating the dummy gage in
precisely the same temperature as the stlVb gage, and yet assuxmg that the dummy gage
does not experience any load. o : v

Anothcer method of temperature compensation is the use of a 3-wire system. This
method requires that an additional lead be attached to one of the strain gage terminals, und
be routed out along with the two normal gage leads. Ths additional lead is used to identify
thermally-induced changes in ead resistance, which m:ght othetwase be mistaken for changes
in gage resistance and read out as strain.,

Self-compensating gages ure also availuble for temperatures up to 800°F. Thesc gages
are manufactured with knowa tempesature characteristics that can be used to correct the
indicated strain levels. Corrections depend on an accurate knowledge of the temperature at
the gage, and the gage manufacturer’s compensation data for the type « " material being
tested. Some gages are sugtplied with the gage factor variation as & function cf temperature,
This information is usefu: when the dynamic component of strain is being measured, since
static drift or - pparent strain can be zeroed, and the time-varying strain may be determined
by using the correct gage-factor value at & given temperature,
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The method of attachment of the gage to the specimen must also be considered in
selecting gages for sonic fatigue tests. The most common method is bonding, with the choice
of bonding agent depending primarily on the temperature range of the gage. Bonding materials
range from low temperature epoxy cements to iugh temperature ceramic cements which are
usc at temperature of 1200 to 1400°F. For even higher temperatures, flame spraying is
used to attach strain gages to the material being measured. Some gages arce encapsuiated in
metal sheaths which arc spot welded directly to the test specimen,

The selection of a gage attachment method must also consider the compatibility of
the method with the material being tested. Spot welding, for example is likely to reduce
the fatigue life of some materials, and therefore may not be suitable for sonic fatiguc test
applications. Bonding materials have different thérmal conductivitics than the test specimen
materials and may cause sharp thermal gradients when the specimen is heated.

in sonic fatiguz testing, a strain gage attached to a panel experiences high dynamic
; accelerations as the panel is tested. This motion is perpendicular to the strain gage surface
and lead wires, and tends to throw the wiring and strain gage cenncctions away from the
test panel. Published strain gage data dealing with *dynamic™ loads is derived from repeated
loading as applied by fatigue testing machines. A high speed machine of this type may .
operate at 10 to 20 Hz, frequencies that are low compared to acoustic exciration frequencies. i
The resultant low accelerations do not present the lead retention problem that is experienced
on sonic fatigue tests, where it has become necessary to bond or otherwise attach the leads
securely to the specimen.

In summary, it is concluded that strain measurement methods for high temperature

sonic fatigue tests require much additional development. Problem areas include the follow-
o ing:
: a.  Accuracy of gages at elevated temperatures is questionable, 5
{ ' b.  Specimens undergoing sonic fatigue tests experience high stress levels, and re- ' 3
iR . M R . s L. . . .
i quire gages with good futigue life at high strains,

¢.  Attachment of gages, whether by honding, {lame spraying, or welding, can cause
localized thermal gradients in the specimen. The same problem applics to the

r ey o e ovieaen

attachment of lead-out wirces.
Eo a - Manufacturers of strain gages are continually improving the temperature characteristics §
- of their products. However, as long as it is necessary to physically attach a device to an ele ;
- vated temperature/sonic fatigue specimen, there will be uncertainties related to the thermo-
L - dvnamic, chemical, and dynamical effeets of the attuched device. Therefore, other means of

. ustimating the stress level in a sonic fatigue panel should be pursued. Concepts that have
potentlal for this purpose include optical methods, and accurate specimen deflection cas-
urements from which the stress can be caleulated.

5.1.3 Displacement Measurcments

T N

Measurement of the dynamic displacement of a specimen undergoing sonic fatigue
tesang provides a good indication of the dynamic properties of the specimen, The wide
range of amplitudes and broad frequency range of sonic fatigue specimens place severe re-
quireinents on devices used to make displacement measurements. As part of this program,
a survey was made to identify devices that might be used to make displacement measure-
ments on sonic fatigue specimens at clevated temperatures. Several types of devices, along
with their limitations, are described in the tollowing p raphs.

NG
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Devices to measure displacenent were considered to fall in two broad categories: de-
vices which must be attached to the specimen being tested, and devices which do not make
physicai contact with the specimen. The former type includes accelerometers, potentiomet-
ric devices, and linear variable differential transformers (LVDT’s). The disadvantage of
contacting devices is that they add mass to the test specimen. In the case of thin sonic
fatigue test specinicns, even light-weight accelerometers can affect the response characteris-
tics of the te<: specimen. Another disadvantage is that, in the combined - thermal/acoustic
environment. devices attached to the specimeii produce undesirable temperature gradients

in the area of the attachment.

The frequency range of accelerometers is generally adequate for sonic fatigue work.
Other types of contacting devices have more limited frequency response. For example,
LVDT’s depend on modulation of the signal upplied to the fixed windings of the device.
Since the excitation frequencics are generally a few kilohertz, the frequency of the motion
being measured is limite! to several hundred Hertz, This type of device is not suitable for
measuring motion at the higi, 'r frequencies encountered in sonic fatigue testing.

Potentiometric devices are limited because of the mechanical problems associated with
their operation. Coupling of the specimen motion to the resistive elements is cumbersome,
and requires special precautions to avoid free-play. If the potentiometric device incorporates
a wire-wound resist’ element, resolution is limited by the size of the wire. Continuous re-
sistive clements have their resolution limited by the wiping element in the device. Alf
potentiometric devices are subject to wear and hoise problems, and are not recommended
for sonic fatigue specimen displacement easurements.

Noncontacting displacement measuring devices operate on one of several principles.
The noncontacting transducers may be subdivided into two general categories: electrical
and optical devices.

The electrical devices depend on either capacitive or inductive measurcments to deter-
mine the motion of a specimen. In both types, a probe is moved to within a specified dis-
tance of the test specimen, which is referred to as the “target”. Then, motion of the target
relative to the fixed probe is read out as a change in capacitance or inductance, or as a
change in capacitive or inductive coupling between elements of the measuring system.
Displacement can thorefore be measured without physically contacting the moving speci-
ment. The frequency range and resolution of these systems are adequate for sonic fatigue
test requirements. A basic problem with systems of this type i> one of linearity. Since the
electrical quantities being measured are not truly linear functions of the distance between
the probe and targey, it is necessary that the range of operation be limited. The device can,
of course, be calibrated over a larger range than the linear range. High temperature opera-
tion of these devices is usually limited by the temperature characteristics of the probe unit,
Since the measurements involve some electrical property of the target, the resistivity,
permeability, und/or permittivity of the target material can affect the accuracy at high
temperature.

An increasingly important type of noncontacting transducer is the optical device.
Some optical devices focus a beam of light on a prescribed spot on the target materials, and
track the spot as the target moves. Other types include laser interferometers, which produce
alternate light and dark lines on a detector as the target specimen moves through small
distances. Optical devices have a common advantage with the electrical honcontacting de-
vices, in that neither type mass-loads the specimen or affects the thermal properties in any
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way. The optical devices may be located farther from the material than electrical devices -
typically, several feet rather than several inches. For sonic fatigue tests at elevated tempera-
tures, however, optical methods presently have practical limitations. For one, the location
of the test specimen in a progressive wave tube or other enclosure may restrict the optical
path between the specimenr and the measuring device, If the test i being conducted at
elevated tempera’..ce, the heat lamps and their reflectors tend to further complicate the
optical path problem. Another problem present at elevated temperature is the radiation
from the test specimen. Optical Jdisplacement measuring devices have their own light
“sources, and specimen radiation would appear as noise to the optical detector.

st T H A L 1 ORI T S R R S SRR

In summary, several types of devices to measure the motion of sonic fatigue specimens
; are available. Those devices which must be physically attached to the specimen add muass,
: and therebv distort the thermal and dynamic properties of the specimen. To circumvent
' these disadvantages, noncontacting electrical and optical devices are more desirable. The
use of noncontacting transducers requires recognition of the physical limitations of the
i devices, particularly at elevated temperatures. Thermal effects related to the sonic fatigue
test specimen, the measuring device, and the medium between the specimen and measur-
1 ing device can all cause erross in the use of noncontacting instruments.

U Bt W A AN 24 e

Additional development work is needed on noncontacting clectrical and optical dis-
placement measuring devices. The use of these devices in the thermal/acoustic environment
should be fully evaiuated. Noncontacting devices are the most promising instruments for
measuring sonic fatigue necimen displacements.

Tt ATt b oo o vn o2 A A

5.1.4 Temperature Measurement

, Temperature measurements in the range of sonic fatiguc tests - up to about 20000 -
are a well established procedure under static conditions. In the hign intensity acoustic
nojse environment, however, the motion of the test specimen causes difficultics with
those temperature transducers which must make phy “zal contact with the specimen,

It is fortunate that noncontacting devices are becoming availuble which promise to

make sonic fatigue temperature measurcments a more rouli e operation.

O St Lt A ANt e i

The most widely used type of tempetsture transducer is the acurate, low cost, thermo-
! couple. This device operates on the temperature-dependent change in contact potential
between two dissimilar metals. A number of materials are commonly used for thermo-

{ -ouples - copper, constantan, chromel, iron, platinum, aad thodium are examples. The -
proper combinations of materials and alloys provide thermocouples .or use at wmpera- g
tures well in excess of 300098, '

; The difficulty in the use of thermocouples Tor sonic tatigue applications results from
the requirement that the thermocouple junction make direct contiact with the test specimen.
Common practice is to spot-weld the thermoc. aple junction in place, The thermocouple
wires must also be attached to the specinen, cidher with coment or with metal tabs which
are spot welded in piace. The thermocouple muast then sustain the farge dynamic ni tions
that the test specimen experiences when it respotids to the acoustic excitation, The use
of thermocouples on sonic fatigue speciinens thus becomes a question of how well the
user can physically attuch the thermocouple to the test specimen. Another deleterious
result of a thermocouple, and its associated attachment mechanism, is that thermocouples
represent materials with different thermal propertios than the test specimen, Undesirable
thermal gradients in the test specimen are a consequence of this situation.
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Radiation transducers largely circumvent the difficulties inherent in thermocouples
because radiation-sensitive devices do not make pli, sical contact with the device being
measured. The transducer can be located remote from the specimen at a distance ranging
from several inches to many feet, depending on the individual device.

Some radiation-detecting devices, generally known as opticdl pyrometers, measure
the brightness tempetature of a specimen. Such instruments are useful only for measuring
temperature in excess of about 1600°F, since the measured object must be at a sufficiently
high temperature that its brightness can be measured.

Other types of radiation detectors operate over a wider range of temperatures. The
thermal radiation from a small area of the test specimen can be focused on a heat-sensitive
detector whose output is calibrated to indicate the temperature of the radiating surface.
Radiation-sensing devices can be used with specimens whose temperature ranges from 100°F
to several thousand degrees.

A highly advanced form of radiation detector is the infrared scanning system. This
system continuously scans the surtace being measuced, detects the infrared radiation from
the surface, and presents a video disr tay of the thermal gradient of the surface. When the
temperature of a single point on the surface is known, the thermal gradient display is
calibrated, and the temperature distribution is completely defired. The advantages of this
system are immedijately apparent. First, the infrared scanning system does not have any
physical contact with the specimen. Also, this single instrument provides complete tempera-
ture information for the ¢ntire surface, eliminating the reed to measure the temperature at
a number of points, and then estimating the temperaiute beiveen measured locations.

The use of radiation detectors in high intensity acousti~ environments is subject to
some restrictions. The detectors must first be able to view the specimen. The detection
devices must also be sufficiently rugged to survive the acoustic environment, Both of these
limitations are minimized by the small size of some devices. The infrared scanning system
requires a satisfactory optical path between the measured surface and the scanning camera.
Since the system operates at infrared wavelengths, special optical components may be
required to provide the required viewing conditions.

Measutement of test specimen temperatures during sonic fatigue tests can be
accomplished with either thermocouples vr vadiation-sensing devices, The tamiliar thermo-
couples have several problems when used for measuring specimens undergoing dynamic mo-
tions, as discussed above. Modern radiation detectors have been developed for temperature
measurements without making any physical contact with the specimen. Further evaluation
of rudiation detctors under actual sonic fatigue test conditions is nteeded, to establish
special techniques for operation in the acoustic environment, The future for temperature
measurement of sonic fatigue specimens clearly lies in the use of noncontacting radiation
detectors.

5.2 SONICFATIGUE CRACK DETECTION

The detection of cracks in sonic fatigue test specunens presents a number of challenges
to the experimentalist. The complicated configuration of a representative acrospese tost
structure usually does not sugeest that any single area is most likeiy to fall. Theretore, the
entire structure should be monitored for failure. The Tocations of crack-detection devices
would have to cover all zones where failure is considered like'y to oceur, The nddxtmn of
clevated temperature conditions further complicates the problem.
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Several methuds of sonic fatigue crack detection were evaluated as part of this pro-
gram. Direct crack detection methods, using devices whose electrical continuity was
interrupted when a crack occurred, were considered first because of the success with these
devices on static and low-frequency tests.

One type of crack detection material that was evaluated was a conductive copper tape
with a dielectric adhesive backing. This tape is available commercially in a nominal thickness
of 0.002 inches, in widths as small as 0.015 inches. Use of the tape as a crack-detecting
device requires that the tape be applied to the specimen in an area where a crack is likely to-
occur. The tape is then wired into an electrical circuit, and the continuity of this circuit is
monitored. When the specimen cracks in the designated area, the crack will propagate
through the tape, and the resulting discontinuity is detected.

Evaluation of the conductive tape on a stytized aluminum panel disclosed that the
copper tape was cracking before the test panel, giving false indications of failures. The test
tape was made from relatively pure copper, which has poor fatigue characterist:  To be
useful as 1 fatigue detection device, tape with better fatigue properties would be required.
Material such as beryllium copper might be suitable. Present diclectric adhesives are stable

to about 400°F, and so a different adhesive material would be needed at higher temperatures.

Another type of crack detecting material is conductive paint. This paint consists of

finely powdercd silver suspended in a fast drying carrier. The paint is applied to the test speci-

men in narrow strips along arcas most likely to be cracked during sonic fatigue tests, The
paint must be insulated from specinens which are themselves conductive. Copper toil solder
tabs are located at the ends of the stripes lor convenience in attaching feads to the concue
tive paint. Continuity of the conductive stripe is monitored, and a break in continuity is

~interpreted as an indication ofa crack at some point along the painted stripe.

A special panel was designed to eviluate this Fatigue crack detection method, The
panel, as shown in Figure 40, is clamped at cach end and subjected to vibration exvitaidon,
The notches in the panel result in stress concentrations at the notches, and cracks cee
initiated in the panel after only o fow minutes of excitation.

Figure 41 shows the display that results whea @ crack propagates through the cone
ductive paint. During that part-ol s vibration cyvle when the painted surface is in lension,
the conductive path opens, and, when the surface is in compression, the conductive path is
closed. 1t was also noted that continuity was restesed when the vibration wits stopped,
indicating that the cracked edges of the painted stripe maintain good electrical continuity

'when the panel is undeflected,

The carrier material used in e conductive paint evaluated hcrc is suitable for use o
3009F. Within this temperature range, these tests indicate that conductive paints are a satis

{uctory method of detecting sonic fatigue Luilure in specimens where the faiture location

can be predicted. Development of carrier materials that are stable at highet tunpcr.uur"s
would extend the use ol this method.

There are other schemes tor observing sonie Tatigue failures that do not.detect the
failure directly, but rather monitor some parameter whick s, in turn, influenced by the
existence of 1 erack. One such parameter is the strain at some point on the panel. A strain
gage Jocation shoutd be selected based on the predominant normal mode shapes of the
panel under test. A change in stress di. tribution in the panel, resulting from a fatigue crack,
will then be detected by that strain page.
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FIGURE 40
CRACK DETECTION PANEL DESIGN

(All Dimensions in inches)
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FIGURE 41
'.LOSCOPE TRACE AT FAILURE
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An experiment to demonstrate the above effect was conducted as part of this program,
A multipic-bay panel was tested, with a strain gage attached to the panel near on.e of the
rows of fasteners on the panel. Since the cxcitation was random acoustic noise, the output
of the strain gage was normalized with respect to the output of the microphone in the
acoustic field. By observing the ritio of the two signais, small changes in strain gage output
resulting from small changes in acoustic excitation wouid not be mistaken for a change in
specimen characteristics. When an abrupt change in the ratio was observed, the test was
stopped and the panel was inspected. A section of the panel was found to have buckled,
causing the reduction in the output of the observed strain gage. While this methed is
subject to the usual limitations of applying strain gages to high temperature sonic fatigue
specimens, it has the sensitivity to detect panel changes caused by buckling or cracking.

Another means of detecting failure-induced changes in the dynamic properties of a
panel is by use of a microphone. In this application, a panel undergoing tests was ¢nclosed
on the side that was not exposed to the acoustic excitiation. The enclosure consisted of a
rigid walled box, lined with material that had high : oustic absorption. A microphone was
placed inside the enclosure, and its output was dominated by the fundamental response
frequency of the pancl. As the panel edges cracked, small changes were observed in both
the amplitude and frequency of the microphone signal. The use ol a microphene does not
physically contact the spechmen, High temperatures on the panel would cause no problems,
because the temperature of the microphone could be controlled independent of the speci-
men. In addition, the microphone has no elfect on cither the thermodynamivc or structural
Jynamic propertics of the test panel,

A mmore sophisticated method of monitoring sonic Datigue cracks would be through
the use ol the infrared scanning device desenbed in Section 5,14, Even a small crack ina
heated specinen would represent a sharp thermal discontmuity in the test spegimen. A
Jisconiinuily of this type would be ckearly and immediately mdm( on the video display
of the infrared scanning system.

Based on the resulbts of this study, the use of 3 mivrophone to monitor the respomic

Cof 4 pane! s recommended as g reliable, how vost techn ique for detecting specimen fadure.

This method is maost suitable for ample, single-bay pandd I which the response is dominated
by one o twy panel resonances. Far more compiex structures, the use of conductive paint
shows prosise for mononing several poltential Billure areas simuliancously, \ddumml
development wink i m*vdcd o wdentify pamt materials usable at fvm;wramrcs in oA

of J00YF.

(h’dv‘ ane method - the infrared wanmag sesteim - has the ability to continuously
monitor a full structural swrface Tor fatigee cracks. The Tugh cost and optical path re-
quirements of this system iay fnt its application. Nevertheloss, the fealute of this
method will menn s consideration on sostic fatigue tests where a precise Kaowledge of
fatigie crack ititiation .« of prme impostance.
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SECTION 6
SUMMARY AND RECOMMENDATIONS

Tasks described in this report covered four major arcas related to high temperature
sonic fatigue tests. These areas are the acoustic environment, thermal environment, effects
of specimen mounting on thermal and dynamic response, and instrumentation and measure-
ments. The results in each area are briefly sumimarized, and recommendations for further
study are indicated.

The studies of acoustic fields have shown that, in cases where the acoustic field is
not diffuse, simple trigonometric functions can be used te describe pressure distributions.
Although these functions do not epresent exact cquations for the pressure field. they
are useful in estimating the response of a strugture by the participation factor concept.

It was also determined that the air flow from uir stream ;nodulator noise sources is sutfi-
cient to prectude sharp rises in the air temperature during elevated temperature tests.
The properties of air are such that under the flow conditions described here, there is
low heat transfer to the air from the heat sources and the test specimen. Therefore, the
usual ambient values of air density an eed of sound can be used.

Additiovn.l experimental studies would be desirable to show the effect of acoustic
fieid directional properties on structurai response As « first tep, an existing progressive
wave and reveiberant test enclosure should be mapped to determiiie the pressure distribu-
tions in these enclosures. Then, a stylized panel could be designed with a high participa.ion
factor in the pruressive wave test section. The panel would be tested in both enc'ysures,
to show the difference in =sponse level for different excitation fields.

For thermal cnvironent siniulation, a computer program has been written i calculate
the two-~dimensional temperature distribution in g panel that is heated by a quartz lamp-
bank. Work has also been reported.on lumpbank design considerations for a combined
thermal facouvstic environmeni, Methods for introducing damping into the rcﬂcctors and
for improving the quartz lamp supports were discussed.

A ueceded extension to the thermal environment studies is the addition of temperature
gradients olong the thickness of the test panel. This would permit prediction of temperature
in honeycomb structures 1nd other sonic fatigue specimens where temperature variations
norinal to the surface may be expected. Additional work on quartz lamp holders is also need-
ed to improve the reliability of quactz lamsps in the high intensity acoustic noise environ-
ment. Still another area for work would be a detailed study of the mechauisat by which
quart: mps deliver heat (o a test specimen, This effort would require an experimental
determination of the variation of the heat {ransier process at different temperatures,
and identification ot al: thermai losses that occur in heating sonic fatigue specimens. Empir-
ical data of this kind are needed 1o provide a realistic estimate of what fraction of the power
in quartz lamps is availabie for heating test specimens.

Considerable work has bees done on the thermal and dynamic response of a test
specimen as influenced by the specimen mounting. In a large number of cases, the thermal
and dynamic problems can be treated separately and then combined, according to the
principles of superposition, Computer procrams were developed for the plane stress response
to a thermal field. Basic equations were aiso presented to show how thermal in-plane loads
enter into the dynamic equations, Experimental data was presented to illustrate the thermal
effiect on the dynamic propertics of a panel.
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A logical continuation of the panel thermal stress studics would be to extend the stress
analysic to the three-dimensional problem. Even in the plans stress analysis, however, other
length-to-width ratios, boundary conditions, and material properties could be evaluated to
supplement the temperature-siress curves given in this report.

The determunatioa of stress in a panel from a knowledge of the panel geometry,
material, and deflection is indicated by the dynamic equations. Evaluation of the stress
would first require a response test on the panel to identify and map the first few normal
modes of the pasnel. Then, the pane] shouid be subjected to a specific thermal/acoustic
environment and the deflection should be measured at two or three points on the panel.
From these deflection measurements, the modes in which the panel is responding can be
determined and amplitudes assigned to the mode shapes. The deflection of the panel can
also be calculated from the measured mode shapes if the coupling with the acoustic field
is known. Determination of bending stresses it the panei can then be obtained by carry-
ing out the differentiation operations in the dynamic equations,

A survey of devices to make high temperature/sonic fatigue measurements was made.
Currcntly available instruments to measure the acoustic pressures and specimen ten- - ..a-
tures appear to be adequate for the ranges currently encountered in thermal/acoustic
testing. Measurement of specimen deflections and strains, however, are definite problem
areas in the combined environment. Because of inherent shortcomings in strain-measuring
devices that must be physically attached to the specimen, indirect methods for measuring
strain should be pursued, as discussed ubove. Deflection measurements with noncontacting
optical and electrical devices are potentially suitable for combined thermal/acoustic test-
ing, although individual devices should be thoroughly evaluated to determine corrections
that must be added in the thermal/acoustic environment.
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APPENDIX A
STRUCTURAL COUPLING AND ACQUSTIC FIELD
A.l STRUCTURAL RESPONSF - PERIODIC FORCING FUNCTION
The structural ruspof@c to pcriodic’t‘onting functions will be ¢ ‘ermined and the

results will be presented in terms of the participation factor and the single-degree-of-
freedom system functions.

The coupled dynamic equations of equilibrium will be written and the equations will

be decoupled by rotation into normaal coordinates. The Fourier Transform of the response
in normal coordinates will be performed to show the relation between the response, the
participatica factor, and single-degrec-of-frecdom system functions.

Dynamic Equation:

iM] %{i'§+[C] %R‘%ﬂfﬁ] 2w%=tp(x,t)§ - an

Dynamic Equation - Undamped Case Homogeneous Solutions

M) i i b }Wizgoj (A2)

(D) w? (1D jwi = 10 (A3)
Eigenvalue Solution and Modat Matrix

wW=w nii: 1.2,3,..... natural frequencies

[®] Modal matiix - each column represents an eigenvector. Yhe matrix is also
normalized such that

(@17 (M) (@) = (1]

(A4)
(1T (K] (@] = [~ wy 2] (AS)
Dynamic Equation - Dampened Cases
(@] 5§ ‘ ’ (A6)
(] lM1{¢>}56$+[¢)1 (1 (@) 3]+ @17 (K1 (01 Js]= (01T |
{p(x t)% (A7)
Let [C] be dlagondl or proportxonal to [M] and/or [X]
6+ D28 o | §+ Cod 3 =@ T e of (A8)
Let p(x,t)} Py gp(x)‘ p(t) '
o ga% £ 28w, {al o] H PO[QJ]T{p(x)} p(t) (A9)
Let
{ rlo=qe T lp(x); (A10)
‘ﬁ(xu{ Py P} b0 (AL1)

Participation Factor is I'. The Participation factor depends ou the product of the spatial
distribution of pressure, and the structusal mode s:_l}&_pc of the panel.
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The Fourier transform of Equation (A9) results in a solution of the equation in terms
of its system characteristics {system_function) and the iorcing function (Participation
Factor). ’ ’

Let the Fourier transform of §(t) for the ith equation be20

Taf2

1 ~jmew,.t
8 (mFg)= — f stye MU0 gt (Ai2)
0 Y-To/2
The Fourier transform of (A9) is
[“"m'2 - (mwo)zl +328 wy; mwo§ 8 (mf )= Pyl Pmi) (A13)
Po I'i P(mfo) )
A. (mfo)=. 9 (Al4)
: wniz {1 - wo) +j 28 (mwo)] ' '
Wi Wy
where the system function (Hi(mfo)) is expressed as
A | . |
H; (mf,) = (A1S)

2
{ - (2%} +j2¢ (_"_’29)}
@pi Wnj

The response is expressed in terms of the participation factor and the single-degree-of-
freedom systern function. ‘

(Al6)

Po P (mf,)

@nj

A.2 STRUCTURAL RESPONSE - RANDOM FORCING FUNCTION.

The cross-correlation of the pressure field in normal coordinates will be expressed
in terms of the cross-correlation of the pressure field in the original coordinate system.
The cross-power spectral density for the pressure field in the normal coordinates wiil be

“expressed in terms of the cross-power spectral density and the modal matrix. This expres-

sion will permit the transfer of any known cross-power spectra for the pressure field fron:
the original coordinate system to normal coordinates, where structural response can be
determined. An expression which transfers the response cross-power spectra from normal
coordinates to the original coordinate system also is presented.

The cross-correlation function is expressed as?!

Lim 1 T

T+w 7). pi(t) pj (t+7) dt A (A17)

Rpipj (r)=

Rotation of the pressure pi(t) into normal coordinates can be accomplished by

A N T
p )= T Py pyt) (A18)
i=1
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T o '
sm(t)= z q)mj pj(t) o (A19)
FIo
NN T T pm 1 T
RBpb(@= 2 T Tpj Py o0 os f pi(tp; (t+1)dt (A20)
=1 =1 )
o NN g g .
Rpmpmiz1 ,21 ®p; Py Ropipit) - (A21)
. ci=l o= s 7

The Fourier transform of the cross-correlation is the cross-power spectral density.

. . Lo o0 . .
- A —jwt . o )
o Ssnpm(f) = f anpm(t)e 2t : - (A22)
_ 1 |
A A NN
Sonpm(D= % J‘i [ Oni Pmj Sppit) (A23)

In matrix form this equation is

Cr=ieTis ) e |  an

Equation (A24) transforms the cross-power spectral density of a known pressure field into

normal coordinates. The cross-correlation of response in normal coordinates is

R s o= B LT s A25
Ry D=L ZT[T o0 8y ()AL (A25)

The transfer of a response parameter from normal coordinates to the original coordinate

system can be accomplished by

N
wi(t)= & P §,(t) (A26)
72 haon

_ Therefore, the cross-correlation of the response is

Ry . ()= g g L Lim L ' §,.(t)8,,, (t+7)dt (A27)
i‘v‘.rj n=1 m=1 m °m T --)oc 2T»[,T | m o
‘ N N , ) . . .
~Rwiwj (M= 2 Z iy Pim Rgnﬁm (1) - , (A28)
-k n=l m=} -
The Fourier transform of the cross-correlation is the cross-power spectral density.
. g N N : _
 Syw. )= 2 T Py d . S ) ' - (A29)
g wiw; el mel in¥jm 8,8m
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In matrix form this expression is

(5,1 = (@] (51 (21T - (A30)

Equation A30Q transfers the structural responsz parameter from normal coordinates to the
original coordinate system.

A.3 POWER SPECTRA FOR TYPICAL ACOJSTIC ENCLOSURES

Normal acoustic test enclosures have progressive wave or reverberant fields. Both of

these cases can normally be considered single input multiple output systems. The acoustic . .. .~ .77 7

enclost're, in a large majority of cases, is excited by a single or a group of sources which
have the same pressure amplitude and phase. For this type of system the source can be
considered single. The pressures at the structural test panel wili have a vasiation in
amplitude and phase which is distributed spatially across the panel. 7he pressures at these
points (p0 ) for this study will be considered to be mulliple outputs from the single pressure
source (pn) -

We will investigate first multiple input-output systems. The multiple output of a multi-
ple input system can be described as a function of the conjugate system function, input
cross-power spectral density and the system function. In matrix notatinr *he expressic..

(8,1 = (H*1 (S, ] () T , ' (A31)

The cross-power spectral density between the ith and jth location is 22

N N

M=z 2 Hm(f')Hm(f) S 0 (A32)

S 1 m=1

PoiPoj

If we assume that we have a single input system, that is, the enclosure is exgitéd by a single
source oy & group of sources which can be considered as a single source, the cmss~powen
spectrum for the pressure between the ith and jth location is

Let the normalizc ! cross-power spectrum be _ _ _
» - B
Cpl B (H=Hyy Hjl )] _ o (A34)'

Equation (A34) gives the normalized cross-power spectral density in termis of system =

functions which are characteristics of the acoustic enclosure. If these systom functions for

various types of acoustic fields can be determined, then forcing functxons in normai coordi- 3k L

nates can be estimated by Equation {A24).
A4 SYSTEM FUNCTION - ANECHOIC TERMINAT }ON

In Section A.3 we have shown that the crosg-power spectrum for a pressure field iy a
function of the system functions for the enclosure. In this section the system functions for
an enclosure with an anechoic termination will be developed. A system function by defini-
tion is the Fourler transform of the unit impulse response. The response of a onn-dummsan»
al pressure field with anechoic tormination to a unit unpulsc is -

p(x, t) = P, 5(ct-x) ) R : V;M.ES)- '. '
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A ;‘I‘iﬁe‘normaliied system function (H(x, f)) is

.

?éief:\l?ourier transform of Equation (A35}is

" P(x, 1) = f pix, e ~Clat (A36)
OO - . :
P(x, f)=Pge ° © =Pye ' \A, (A37)
- ¢ P(x,f)=P_ (cos (ﬂ‘— —jsin[2X | : (A38)

'H(x f)= cos(zx x) - j sin (?}{2‘.) (A39)
p - p

The systam functlon of Equation (A39) describes the pressure field as a function of
frequenry &nd- distance from the source. Equation (A39) is Equatior 2.2, the pressure
dxstnbaxt;r,m in a mbe with anechoic termination.

AS RESPO“JSE TO RANDOM ACOQUSTIC FIELD-ANECHOIC THERMINATION

The normahzed ctuss-power spectra for the ith 'nd jth location in an acoustic field with
anechoic temnmmn is -

Chig, = "1 O Hy (A40)

2m; % nxp\ 2 .
C{p\ @Sifi = (cos (}‘p )+J sm(‘)\p )) (cos (_)T;) ~jsin (7;')) (Adl)

Tmnsfom‘gmg tha above equation mto normal coordinates gives

o - N N T T A .a‘ll'X‘ ..17)(l
oy =3 T Pyi P (cos (T)ﬂ'sin (——))
- i m - l:?\j =] P )\p

Gk 2n |
cos -»w3)~ j sin ( x])) (A42)
' )qp; N A

- bquanan (1%42} is the hormalized cross-power spectrum in normal coordinates and it is

- 'sapambie i mdj Equat:on (A42) can be rewritten in terms of the participation factor.

mg ma 1‘ L S . | (A43)
Ttxe nommhzed power spectrum for the case n equals m in normal wordmntcs is
Cp p_(0=iri? C aw

Equdtlons M.43)and (A44) indicate that the crossspower spectrum in normal coordi-

- nates for oressure {i81d with an anechoic termination is a function.of the participation
. factors which wora developad for periodic functions. The normalized cross-power spectra
;o for the pressure field in matrix form is

rce‘;s (;‘ rml { L (A4S)
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The response of structures in normal coordinates is

[35]-“\1{\1[ \ Tl TH Spp © | (A46)

The system function H in Equation (A46) is the single degree-of-freedom-system
function in normal coordinates for the structure. For structural dampinz, which is normal-
ly less than 5 percent, the following approximation can be written at the normal mode
frequencies. :

I (0 P >> Hyg Hyg | . (A47)
(851 ~ NIl 2 1 2N 5 ® | (A48)

The above expression is a diagonal matrix and is approximately true for cases when the
modal frequencies are separated by at least 10 percent.

Equation (A48) indicates that the response to a random acoustic field in an enclosure
with an anschoic termination is a function of the participation factors, I';. The response to a
random acoustic field is similar to the response to periodic functions since the forcing func-
tion in normal coordinates is the participation factor. The effect of participation factor
on response will therefore be the same for beth random and periodic acoustic pressure.

A.6 RESPONSE OF STRUCTURES TO RANDOM ACOUSTIC FIELD-ABRUPT
TERMINATION .

The response "~ structure to a random acoustic field will depend on the cross-power
spectra of the pressure within the enclosure. Equation (A45) indicated that the normalized
cross-po zer is a function of the system function for the enclosure. The system functions for
an enclosure with a particular type of an abrupt termination will be determined. The results
of this analysis will be extended to the other types of terminations and to fields with three-
dimensional properties. The system functionlis the Fourier transform of the unit impulse
response. The termination to be examined will be an open tube. The unit impulse response
will be found by applying boundary conditions to the wave equauon 'Ihe wave equation
for particle dxsplacemcnt in terms of unit impulses is : N

BO.O=B, BN +B_ Seth) " (a99)

The Fourier transform - : dquation (A49) is L o
B f)=f. b(xJ)e""‘”dtfﬂ*" s

B

B(x,ﬂ B,e ?."+6 o ¢ (Asl)y
The boundary conditions for the open tube are B - R |
x=0, 80, 1)=y 5() T
x=Loa(l, n=0 . @A)

: The relation between partic!? dlsplacement and prcssurei.s P 7
PO, 1)= = poo? By B, 1) (As4)

L Cjex . ~jw L N
ot P, D)=~ pge (w) 8_ 01‘-—'5 ¢ aal 7 {ASS)




Applying boundary conditions of (A52) and (AS53)

:  Bo=Beth A (A56)

0=5 % 56“’3‘%& (AST)

ij i

L A58) i
Y el e
e T

—jwl
‘ e ©
—=fo jwlL  —jwL (A39)
e tc T

g
Boe

2cos(c )

jO)L
Boe

ety . (A61)
2 cos (-~)

<

By=

The particle displacement for an open tube is

(L- x)}]
8 (x, )= go [cos(

(w,L) o = ,(AG..)‘ |
- cos|— S L ,
| ¢/ ~ | ‘
The pressuro is , _ _ :
8.0 2wy, . fw | o o
. l:(x‘t‘)=..9_.9__(—)[sixt(f—(l,mxyl S (AG3) .
_ _ wliic ¢ r : - A
_ cos{— - S ' o
e - fwl wx Cfwxy) -
P—(x.t)‘BOP(-, cw {tan (—-—) o8 (-:—-) - sin (T)l o (A64')

The normal modc frequeticy of the tube, w Wi h plvan by w = 27 (e /4L). 'I‘hcn l:m (w Lic=
tan (nm/2) =-ee, although the small fosses present i the tube will limit the pressure amplitud» '
to a finite value. The prcssun dxstnbuuon in the tube can thut be appro»matcd by

l’(x, na P, cos (31)
| -\

(AGS)




Equation (A65) is the system function for an open tube and corresponds to. Equa-
tion 2.3 in Section 2.1. The same procedure used in Section A.5 will result in a similar ex-
pression for the response. That is. the response will be a function of the single-degree-of-
freedom system functions of the structure and the participation factor, T}

For a three-dimensiona. structure the system function for a large room 1s

H(x.y,z,0)= [cos(zm() cos(zw) cos(zm) i (A66)
Ao/ A Ao,

Py
Sections A.2 through A.6 indicate that the acoustic-structural coupling for random
functions can be estimated in a manner similar to the acoustic structural coupling for
periodic functions. The response will be a function of the structural smgle-degreeof-froedom
system functions and the participation factors.
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APPENDIX B
TEMPERATURE PREDICTION COMPUTER PROGRAM

The program described here is used to solve for the temperature distribution Tj;as
defined by Equation (3.16) in Section 3.1. This example is for a stainless steel panel)
symmetrical about a centerline. The half-panel has been divided into 5( segments (10x5)
with this division appearing as 11x6 in the dimension statements. The 11x6 dimension

accounts for the temperature heing calculated at corners ratker than centers of the
segments.

b

The quantity A is the original assumed temperature, from which T is dalculated_. B
is the difference between A and T for each iteration. Initially, 10 iterations are program-
r . The user may request additional groups of 10 iterations, as indicated in line 440,

I the program, the constant R (line 60) is the same as K in Equation (3.14). Like-
wise, Ry (line 130) is the same as Kl in Equation (3.15), :

The constant S (line 70) is initially assighed a value of zero. This term is later com-
puted as the value of Tr (Equation (3.9)). ' '

The program presented here is designed for use on a conversationhl, time-sharing'com-
- puter system. Therefore, different computers will require different input (output) formats.




PLATEM

10 DIMENSIBN AC11,6),TC(11,63,B(11,6)

20 DATA B/66%0./

30 DATA T/66%0./

40 DATA A/!Q*BO-;U*“OOoa800)80.;9*4000;80.;800;9*400.;80.)80-)
S0&9%400.,80.,80.,9%400.,80./

60 READ, R

70 S=0.

80 X=0,

9 D8 ! I=1,1}

100
110
120
130
140
150
160
110
180
190
200
210

220

230
240
250

1260

- 270

260
- 290

D 1 J=1,6

AUl,J¥=AC1,J)+460,

} CONTINUE

R1=8.8E-3

R2=R{/,300,

25 D@ 2 1=2,10

D3 J J=2,5

T(I;J)a(n(x.d-l>+A(1 l:J3+A(I.J+l)*A(I+1¢J)+R>/a.
TCI,JImCAonT(1,U24]100.%R2%S+RINCACL,J) /7100, )¢24a)
3 T‘I&J)-T(Iad)/(ac*(l‘+92*(A(on)/ch )**3)} '
Jub '
T(I;J)=(2.*A(I,d-l)tA(;~lod)*A(l¢l:J)*R)/4c E
TCL,J)aC8.0T(1,J)+100.eR2xSeRISC(ACL,J)/7100)2%04) .
2 T¢I, J)iT(Iad)ltﬁ.t(l.#RE&(A(!:J)/!OD-)##3))

D@ 4 1=2,10

De . 4§ J=2,6 » S a

4 B(x:J)'(?(Iod)'ﬂ(‘od)}/ﬁy

D 8 (2,10 .

De 9 J=2,8

Jub : .
8 T(iod)!T(!od)*B(! ﬁod)03(101;d)+2.taticdﬂl)
IF(X.LT, lO.) GG Te 63 -

'3*00

e s 1'2;10 o A
DD 5 Jx2,6 - - . , - IR
IFCABS(BC!, J)).Lsﬁz) GG Te 5 o L
2=ABS(H(1,J)) - ' : :

$ CONTINUE

>ZI-A.¢2 . : _
0 PRINT 100011 - -
100G FRRMAT(“THE HAX!HUM DiFFERENCE 15";?7 30" DEG. F- w3y
-PRINT, - A ,
prNTl - - .
. PRINT,*{F RE‘TER%T!G” 05533503 TY?& 13 0 TG PR!“T QUT“ :

READ, 22
IF(Z2.EQ. 0.) GO T 57
G2 T¢ 62

) 57 CONTINUE o _ '

PRINT,

‘9&‘“?0

- 106-

9 T(I, d}'T(IaJ)¢B(I t,ax*acx»x J>+8cx,d-x>¢5<5,J¢1>;@]}j *

C .

doman s e gttt R S e e e e el et gl e

et i




e T, T T T

#

L er

PLATEM CONTINUED

510
520
530
540
S50
560
§70
580

590

600
610
620

630

650
650
670
680

T ACL,J)=T(l,J)

END

DB 6 1=2,10

DB 6 J=2,6

6 T(1,J)=T(1,J)-460.
PRINT200,(T(1s2)»TC1,3),TC1,4),TC1,5),T¢1,6),1=2,10)
200 FORMAT(S5F14.3)
Gg& T8 73

62 X=0.

63 CENTINUE

XaXe+j .

S$=0.

be 7 I=2;26

DB 7 Js2,6 |
S3S+(TC1,JX/7100: )40

$=S/45.
G@ TG 25
73 CONTINUE
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APPENDIX C
DERIVATION OF GOVERNING EQUATIONS

The complete solution to the problem of specimen response to a combined thermal
and dynamic loading requires the evaluation of eleven parameters (in Cartesian coordinates).

These parametersare T, p, V "V V +Oxxs Oyys 0220 Oxz and Oyz (due to symmetry of the
stress tensor Oy = Oyx: ete.) 23

To determine the above parameters eleven equations must be solved. The solution of
these equations with the associated boundary conditions is usually guit: difficult and often
can only be accomplished by approximate numerical methods. Fortunately in many engincer-
ing problems the number of equations and the complexity of th. equations may be reduced
by the use »f certain simplifying assumptions. The following are the eleven basxc equations
and the smplifying assumpuons which can often be applied.

The first of the cleven equations is the equation of continmty This equation expresses
the conservation ot mass and can be wntter

dpo+d (pV, )+a {pV) {:t(p‘-z) =0 . (CI)

Under the assumption of a wnstam and known density we can reduce the number of reqmr-
¢ ] equativns and unknowns by one.

The next three equations can be derived from conservation of momentum. ‘i hese

equations state that the acceleration of a body is equal to the sum of uxe mn.m. and the
specific surfage forces. This can be writien as:

- “a‘\' PV O Vet Vy 3 VY 28 Va)®

pf + 3, 0“*3}. axy*u g, , _- . ' A(Cs,’.a}
) . » 2 “r # -g
P_“’t“>°*vt">’v>""y“’s‘ MR - . |

p(atvwavn 3 VetV 3, ¥

‘ ’ T3
pF, dy « Oz ¢ 6), "yx * 3; Oy, | : . (L)
- The ifth equation to be dealt with is the enttgy equation. This ejuation states that
the tate of change of kinetic energy plas the rate of change of internal enengy must eguat

the tate of nomechanical energy toss plus the power of the surfice and body s’ewes actm;
O hte continuum . .

i08

oty ereparnni vt =
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S5 AR By

W A S B e e n mme e o e

[0pp +3ypVy +0ypVy + 03,0V 1 AV, V, + BV Y+ 1V, V, o)+
[a{e + anxe + Vyaye + Vzaze] +
LYVxPLBVy + Vigdy Vi + VBV v, 3 V] +

vyp{atvy + anxvy + vyayvy + vzazvy} +

,Vzp[atvi TV 0x V tVya v, + Vzazvz]} =
}

(Vx[pr Toyogxt ay"xy t3,00,1+
Vy[pr + axoxy + ayoyy + azoyz] +
V,[oF, + 050y, + ayoyz *+8,0,,1 z "
0y x0xVyx * oxyax\/y +0,,0,V,* oxyayV

Oyz0yVy * 0y, 8;Vy + 0,0,V +0,,0,V,

) POy AVt (€3)

— 9,0, — dyqy — B

ydy = 024z

From Equation (C1), the first term in brackets on the left side of (C3) is zero. From
Equations (C2) it can be shown that the expressions in braces on the left and right side of
{C3) cancel term fo: term. By definition aivj = éij' Equaticn (C3) can now be written as

p(Bye + Vydye + Vydye+V,9,0) =

Oxx€xx ¥ Oyyyy T 07582, F Aogyeyy +
Oyz€xz ¥ Oyz€yz) — Oxdy — 0yqy — 3,4, (C4)
The last six of the eleven required equations are the cons;,tritut.ive equations, better known
in this case as the generelized Hooke’s law.

Oy _‘(T;;)_%_I_.z_!;) [(1pdeyy +u(eyy +€,,) — (149)aT] (CSa)
Oyy = CRA(1=2) [L10deyy ¥ ey * €)= (Ti0)eT] (€50)
0,, = m‘”‘,;‘)%‘_‘f_,;) [(1epye,, +(eyy + eyy) - (11tv)aT] (€5¢)
Oy =Gy | ©9
00y =G vy ' (CSe)
042G 1y, _ f (C50)

The term in parentheses on the lett of Equation (C4) is the total time derivative of the
nonmechanical iniernal energy, . This energy is JopT where cg is the specific heat at con-
stant deforiratation, We atply Equation (CS) to replace o in Equation (C4) in terms of
strain and note that if we consider zero input forces, Txy» Txz» and ¥ 2 re zero since they
are not a function of temperature. Further, we assume & purely conductive heat transfer
mechanism. Equation (C4) then becomes:
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, E . . .
pepT = (T30 (Byy +éyy T 6,0+ {Cé)
k(3yy T + 8y, T +3,,T)

The ter involving T represenis the rate of change of temperature due to the motion of
the body. If this temperature rise is small {as it is in most cases) ther. T = 0. Similarly the
terms involving ¢;; represent the mechanical vibrations due to thermal changes and can in
general be neglected.24 The energy equation in this case degenerates to the well known
Laplace Equation?5

By T+ 3y, T+3,,T=0 «n

Equation (C7) shows that the temperature can be calculated without mechanical con-
siderations. This represents the quasi-static thermoelastic theory. Before turning to the cal-
culations of the veiocity components from the equations of motion and the stress compon-
ents from Equations (CS5), we will examine the calculation of the temperature field in more
detail.

Equation (C7) is the general expression for the three dimensional steady state temp-
erature distribution with zero heat sources and losses. In the current discussion the specimen
will be a thin structure (3,T ~ 0; that has reached steady state. It is assumed that the heat
is applied frem a quartz lamp reflector system in such a way that we can assume uniform
heat generation within the specimen. The absorbed radiation is of such a magnitude that all
convective and radiative heat I0sses are accounted for and the required teinperature distribu-
tion is achieved. Equation (C7) is then written as

K3, T+ 3y, =4 | (C8a)
' and

= Qeadiation loss T 9convective ~ 9 absorbed (C8b)

A description of the computer program used to calculate the temperature distribution
is presented in Appendix B. For the remainder of thie discussion it will be assumed that the
temperature distribution is known. :

The analysis of the thermal-dynamic problem now requires only the solution of the
equations of motion and the constitutive equations. This is still not an easy task, but
through the use of certain assumptions further simplifications may be made. We first make
use of the theorv of superposition and assume that all deflections are small. Two problems
are then treated separately, one thermal problem and one dynamic problem. The compon-
ents of the static and dynamic stress tensors add linearly. We will consider the thermal
problem first.

The thermal stress problem is a static problem, The left-hand sides of Equations (C2)
represent the total time derivatives of the velocity components which for the static case are
zero. In this analysis, since T(z) i constant and we deal with thin panel structures, the case
of plane stress may be assumed. Plane stress implies that g,,, 0, and o, are zero. From
Equation (C2c) we note F, must also be zero. The equations of motion then become
Oy Oy + ayaxy = - pFX - (C9a)

T e 2
0 + 3y°yy pr . (CoY)

110

xOxy

. R AR ~Mmmmnﬁammmm~mmm
A AT T A 1170l v 2 v

: o A ) N WO SR N P AT AP 2VN D., TOM- ATL S IS A
v e O o] 3 P I S Or P SRS B



The body forces, F, and Fy will be neglected in the static equm‘srmn .Jquotxons (C9}
i For the plane stress case, the constitutive equaflons becoms

E - E : o “\“ T

(C10} into Equations (C9) and make use af the wnowmv stramadxsplacement reiatmn foz\
small displacements: : : . =

Equations (C9) then become:

E E E a '
dyu + vV < B I3 U u+3, v -“ «T C

3= dl0,u +ady } T By (3 U +3, ] 2 - (C12a)
..er L

20 yl[d v+vax4]+ﬁ_a [a UFdy V= =2y T (C12b)

In order to eliminate the need for the soiutxon of two simultaneous partial dxfferentxa!
equations we introduce a function ¥ such that

d ¥ =u . . s (C13a)
oY=V | (C‘lab)

This function, ¥, is known as the strain potennal funcnon 26 Subsntutmg Equatzons
(C13) into Equations (C12) we have: : :

B[y W+ 0By W] +(1-0) 3By ¥ = | |

Oy (Ogx ¥ + a},yw) = (1+») @3, T o (Clday ~
BylByy W+ v3y U1 +(1-0) 3By Y = |

ay[axxw + 3yyw] = (1+p) aayT

Collecting like terms, ' uations (C14) become
ax{axxwayyw-(m) aTl =0 " {Cl5a)

8yLdyy ¥ ¥ Byy¥ = (1+9) aT] = i)

Oyy = 152 ey F P (T R
y=Gexy . ) S :_::: o {CiGc) A

" ’ To obtain the equizibrium equations m?cms of dzopiaceﬁﬂents we substitute }:.Quatlbhs |

€y = Oy Y ) ' o .(Cila)

exy=axv+ayu - s B . (Cllg) T

N iAcnseod, | Ameparm e vy aony A
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- frg_tegratihg Equations {C15), we have ; - s
axxw + By ¥ --".(lfrv)aT= f1(y) +C; . (C16a)

x Ay~ (I 6T = 1) +Cy (C16b)

From hquamons (Cié) we can seé mat f{x)= I(y) 0 and the basic equatlons become:

\\\..1: xV+AVyV (1+V)(¥T+C ::" T A . (C17)

A The constant C is evamated from a boundary uondmon on Oy ¥ + 8 gl/ ( 14271 or
“ its derivatives: Thus® the solufion of the thermal stress problem rests wﬁh )he solui'zon of
e Equatxon (C1 7} for the one vanable, V. ‘ - '

, The soluuon of thc dynamic problem can also be simplified so the complete solution .
to Equations (CZ) through (C5) are not. reqmred The left-hand sides of Bquations (CZ) are -
the. components of acceleratxon with respect to the coordinate axes. It is assumed that the

o - components of acceleration in the x and y directions can be neglected, and that lateral de- -
i. flections.are small compared with the: thxckness of the panel..In the present case, it is assun.ed :

- that the stress in the z direction, 6,,,, may be neglected which-implies that all Toads in the z
dm.ctxon are apphcd to the midplane. Equatxons (C2) then become, for Zero body forces,

0= 0,05, ¥ 04y + 5,0, P . (Cl8a) |
: 0 a\”w aygyv ‘aZ"yz' " _ (Cligb)_'.;;
‘. 6 xIx +a ay N  ~. ' : ((,180) |
» Prom Equations (C1 8! the equatmn of plate bending under normal dynamjc Io*dm« is
xm(ownza‘xy},\mw)wkay) y ,(Dw)"cffgf . (019)

: The denvat'on of th:s equaacn is not prespntcd here but may be found in several rcfv,i«
- encas 27,28 In addition o thic lateral loacivg, 2 plate subjected to thermai loading develops
- thesmiial stresses in the plane of the plate which must be taken intc a¢ccusit. Thermal
-~ stregges result in traction forces at the boundary which psoduce mements about the de-

- flectéd siirface. The resulting modification to Bquation (Ciﬁ)‘ 4gaxn derived in ihe litera- -
ture for a constant.plate sh*‘iness Dyis: -

D gaxxxxw, 20 0y + Dy ¥ } 2080wt N, 2w 21\1,,3,6,5},‘\:«_+Nyy pyW (€20)
Assuming w = AW(x,&)(:os(lwnt+ &) Equanon (C20: Latomes
S p %a W 20, W+ Dy W -
g XXXX XXVY yyyyY'y . ol : _ B
- P+ oy N +Nyy8y W - gq W0 . (€20

“The determination of Ny Ny, and 1 \yy'c"“ be accomplished by noting that Equati~n (C11)
and (C13) yield he followmg :elanon«; ' :

Cxx = axx\t” - yy = 'yy’(’" Evy ™ z'r)xy\l’ T | {022)
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The forces per unit length‘m—ay be computed by integrating the stress over the thickness, thus

¢/2 .

N, = f o0z (23
-c/2 ' '
c/2 .

Ny = f opydz o (C23b) -
-cf2 ‘

ny= j Oxy dz ~ . : (C23c¢c)

N —C/2 . . . .

Substituting Equations (C22) into the generalized Hooke’s law (Equation (C10)) and per-

forming the integrations indicated in Equation (C23) the forces per unit length are expressed
in terms of the strain potential function as:

Nyx = 5 Joxx¥ + 03y ¥ — (149) oT] : ~ (C24a)
=Ec .
Nyy =ES5 [ayy 0 + 000 — (140) oT] (C24b)
‘ = Ec
Ney =22 8,,0 | (C240)

Equation (C21) may now be solved for W in term  f the frequency and potential function ¢
for given boundary conditions. It should be notec. nat W in Equation (C21) was normalized
with respect to the coefficient A which must be included to obtain the actual mid-plane de-
flection. The assumption that lateral deflections ure small compared to the thickness allows
us to neglect, for this case, the stretching -f the mid-plane, It is also assumed that all in-
plane loads are applied to the mid-plane ot the plate and there are no thermal gradients

through the thickness of the plate (i.e., the plate is initially flat). The peak stress at-the sur-
face due to dynamic loading and inplane forces is:

. Ec i .
Oyx = 3«2-(—1—:;2) [axxw + Vayyw] . | (C2§a)
= Ec X ,
g, =~ [0,,w+vd, W] {C25b)
yy 2( l“V2) yy XX _
= 2Ge axy : (C25¢)

If the iu-plane forces and deflections are very large, such that the mid-plane is stretched,
second-order terms should be included in Equations (C25). These equations then become 29

Oy = 2(1E 5 v hanZE Wi Wl c2w
2 2 '

Oyy = -Z(I—Cv ) [oyyw + ‘/a(ayw) + POy W+ -%-(axw) ) (C26b)

Oy = 2G¢ [3,, W + 3, wd w] (€60
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APPENDIX D
COMPUTER PROGRAMS FOR THERMAL STRESS CALCULATION

Print-outs of four ;omputer programs used to calculate, subject 1o various resirictions,
thermal stresses in panels are presented in this appendix. These programs are written in the
FORTRAN language and in a manner compatible with the GE430 time sharing computer.
The four programs presented here can be merged into one program when sufficient storage
capacity is available. In the present case four separate programs, each within the gapacity of
the GE430, are used. The outputs from one program are read into a storage file and later re-

-called as inputs to subsequent programs. A block diagram showing the basic inputs and .out-
puts of the four programs is presented in Figure 42: The potential program is presented on
pages 122 through 125, the strain program on pages 126 through 128, the normal stress pro- -
gram on pages 129 through 130, and the shear stress program on pages 131 and 132. A list

of the symbols used in these programs is presented on pages 120 through 121 of this appendix.

The first program in the series is used to calculate the strain potential.30 in all subse-
quent statements it is assumed that a state of plane stress exists, The basic equation to be
solved is

dyxh + gy = (I4)aT+C ’ | (1)

where ¢ is the strain potential function and C is a constar * »f integration. Figure 42 shows
the model used in computing the potential function by the finite diffesence technique. 31

In the potential program, the user is requested to supply a boundary code of “1" for a

free boundary and “0" for a fixed boundary. The user is then asked to supply five coefficients
of the temperature distribvtion in the x direction. The form of this distribution is

Ty =Ap+Ay XI+A; X2+ A, K31+ As XM (D2)
“15<X<LTS, ~ XIS Y<K

T(y)=Ap+Ag 1Y I+A3 IY2I+Ag V31U +Ag iV (D2b)
“15<Y €S, - IYIKX <1y | '

“In lines 390 through 520 of the potential program the two-dimensional temporature distribu-
tion is computed. This distribution has the desired centerfine distribution and a constant
boundary temperature. Lines 80 through 100, 300 through 320, and 400 through 520 ay .
be modified for various other tempetature distributions.

The user is next asked to supply the value of genter temperaturc, Polgson’s ratio, the
coefficient of thermal expansion, the length of the increments used for finite difference
- caleulations, and the number of increments in each direction. The dimension statements
may be modified to NX+1-by NY+1 arrays. The user is chen asked to suppty a ende which
~is 1™ if the coefficients have been normalized to A and *0” il they have not. This =
- corresponds to a temperature distribution which is normalized 1o the center temperature.

To evaluate the potential function it is necessary to determine the constant of integra-
tion in Equation (D1). This constant is evaluat~d from the boundary conditions. The valuc-
of the constants for free and fixed panels with a constant boundary temperature are

(1 =v)aTy o (03)
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FIGURE 42
THERMAL STRESS PROGRAMS
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and
~(1+v)aTy (D3b)

respectively. If boundary conditions other than fixed or free are to be used the value of the
constant C (TPC, lines 540 and 560) must be computed from Equation (D1) and the rela-
" tionship between strain and potential. If the strain at a point is known then

C=exx la,b +eyyla,b - aTla,b (D4)

If stress, forces, displacements, etc., are known then the other equations of elasticity must
be applied to obtain € and e
pplied t alfl €xx 'a,b vy la,b

The solution of the differential equation will be restricted to a bounded plane region R
with boundary S, and where ¢ is defined and piecewise continuous on S. The problem is to
find a function ¥ (x,y) which is continuous on R + §, is twice differentiable in R, and ;
satisfies in R the linear second order partial differential equation (Equation D1). ,

. The finite difference representation of Equation (D1) is:

pLItDry @I - D =29 pd+, H+yd -1, 0 - 29 A1)

-~ (DS)
DY?2  px?
=(l+»)aTW HD+C
Solving Equation (DS) for ,W (1, J) we obtain '
l » '
Ipy? + + +
"'_(“J) 2(DX T DY2 )l Y=y~ n w(l LI (Dé)

DXZ (¥ ¢, 3~1) + (i, T +1)) - DX2 DY ((1 + ) aT (L, ) +LJ'

This equation may be solved by using muxmd values within the region R und the known
values at the boundary S for the function ¥(1, J) on the right side of Equation (D6). This pro-

- cesses Is then repeated by n,plaung the old values within the region R by the new computed -
values of W(I, J). The iterations are continued until the old and new vatues of (1, 1) are
sufficiently close; that is, until (1. J) solves Equation (D1) and the boundary conditions,

- with sufficient accuracy. The above methiod is the Jacobi method. 32 L extension of this
-method is the Gauss-Siedel methed, This diffess from the Jucobi method in that the new vilues

“of ¥, J) for ad;ucent points are used as soon as they are computed. This technique increases

the convergence rate by a factor of two over the Javobi method. 'llm t,qunuon unlwmg lIus
method is given in lines 900 through 990,

2o order to coimipute the potential function, the boundary conditions for uation (‘DS}
- must be supplied. In the case of a tree panel with constant boundary temperature the traction
© forces per unit anva are 2ero at the boundary and the following con dition for stress results:

Oyx = Oyy = 0yy = 0 S N )

From the gcnﬁrahzud Hooke's law and the stram displac\.muu mlmous it can be shown that
this condmon reduces Lo

But v =ag = enal o oy
ayu + BKV = () ' ' (D9
1

i
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The simultaneous solution of Equation (D8) and the application of the shear restriction
(Equation D9) results in an expression for the displacements at the boundary.

u(x,y)=aTpx +a+ by (D10)
v(x, y)=ozTBy+_d-bx : d1n

The coefficients a, b, and d represent rigid body translations and rotations. These coefficients
were zero for the cases analyzed in this study.

When the expressions for the strain potential are substituted into Equatiors (D10) and
(D11) and the results are integrated, the expressions for the struin potential at the boundary
are as follows:

v | -aTBy2/2+c1 D12
Ixl=
w[ *aTBx2/2+Cz : (D13)
lyl=
Since the potenual can only be known within an arbitrary constant and this constant does
not enter into the strain or stress calculation, we assume Cy = C5 = 0. Thus the boundary
conditions for the free panel, used in the potential program, are
] l = ceTBy2/2 \l/! «aTszlz - (D14)
- xl=a lyl=b
These conditions are supphcd in lines 7"0 and 760 through 790 of the potential progmm

The boundary conditions for the fixed panel areu=v = Oat the boundary T hxs im-
plies that

a =y wax‘.w-«;o, . - L ”,(-ms)'

g| =fp¥cy | (D16)
Ixleg o . R R

vl =+, L OIY
yl=b '

which nnplius f(x) = f{y; = 0. As with the free p.mel we may choose C= 0 thus ¥ = 0 at the
190,

o in addmon to the use of this Gauss-Siedel mclhod of smwwve displacements the con-
vergence rate was mmasui by ising a successive over-relaxation t2chnigque.33 The coeffi-
cient for selaxation operations used in this program is 0.443, as suggested in reference 33,
When different increment sizes are to be used the value of the relaxation factor should be.
shanged. The 'm'ex‘-reiaxatiw technique is employed in line 1030 of the potential program. -

© Qmge thie potential has been calculuted with sulficient aceuracy it is placo.d in a storage
file for use in the strain program. : :

_ “The strain progeam is used. to compate bath nomml and¢ shear strains from the po-
, tenuai function. The struins are related to the potential function by the fchow:ng cquations:

€ a\x‘é’v vy syé exy’ ..6\)4' V ' ) - (DI18)

L

The finite difference approximations of tite above egquations are

118

boundary: The boundary wndumxxs for the n\ed p:md are uwn in lines 740 atd 760 tlam&gh o




ey (LY = YA+ 1,0y +yd-1,3) - 2¢1J) (D19)

DX2 .
DY?
e (L)) = 2[9(L)) + Y+, J+1) - ¥(1,3-1) - Y(1-1,)) 2D
Xy " DXDY

These equations are solved in lines 670 through 720 in the strain program.

‘ The solution of Equations (D19) through (D21) can only be found within the region
R. In the program for free panels the strain at the boundaries is known and thus may be
supplied directly. For the fixed panel the normal and shear strains at the boundary are zero
corresponding to zero deflection at the boundary, From Equat:ons (D12) and (Dl 3) it éan
be shown that for the free panel.

xx |p =6y [p =T S o
% p=0 T
The boundary conditions for the fixed and free paml are supphed in hnes 340 tlxrough 480 |

~and 510 through 650, respectively. The values ot normal and shear strain are thm stored in-
a file for use in subsequent PRONIAIIS.

“The normal stress program applies the genéralized Hooke's law (o obtain the strm. dis

mbutxun from thc normal strains and the tcmperatun. The ml.\tmns ior cakulmny uotial” "

| 2) et ““’""“ | R A

“ p lt -w‘x-(i*v)a‘i‘I o 'l.(mgy" )

" These equauons are mlvcd inlines 410 th rough 470 in the pmgmm A muzuw to compum the -

.. maximum nommal stresses in the X and y directions is given in ines 630 thrwgia 810, 1f e
«valm, of waximum atmss w_urs ut wore than one point ouly the first poim is retauwé

_ le, shear stress Progran uses tlm Hooke's Jaw. n,lahuu twtwect' s:iwar smss and she&r
'slram Q\ow.i below:. : :

eggRGey LT cma)"

- Tiw equation i is solved in ling 220 of the pmgmm A mvtmc for ga'cuiaung the maximum -

~ . shear stress is given int Hies 390 through 510. This xoutin»: is subject to the sime restriction

, .mtlw naximu nomlal stross routine.

The output of a tirpical u)mpuk'r un is pmsented on pages 148 tilmugh 158, Responses
which the user types into the computer are underlined. The example analysis is for a 15 x 13
mch steel panel with free boundarics and a temperature dxsmbuuou wuh T(XY of the fogm.

T(X)= 800 - 13.33X - 8.88X" oM

This corresponds to a 880PF center temperature and 280°F bouridary wmpemmu since the .

temp..murcs used in the pms’,mn are rcl‘cmmcd to ambient,
' ' ' 19
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(The following symbols appear first in the potential program})

SYMBOL

X(1)
Y(1)
AQD)
PLY)
POT(1,J)
DIF(LJ)
TA,5)
TP(1,J)
NU
MAX
BOUND
TC
AL
XL
YL
NX
NY
DX
DY
NXI-

U NYIL

NXC
NYC
. "i)/ﬁ
. DY

AR
iR
- TEST
CHECK
CTESTI
BIRECT
POTFIL
TEMPF

MEANING
coordinate in X direction
coordinate in y direction
coefficients of temperature distribution
old value of potential function
new value of potential function
difference between new and old potential function
temperature distribution
nonhomogeneous term in potential equation
Poisson’s ratio _
maximum percentage value of DiF(1,J)
code identifying boundary typc ' .
center temperature - .
-coefficient of thermal expansion
length in x direction
length in y direction :
aumber of increments in x direction

- number of incréments in v direction

element lengthi in x direction for finite difference calculations

- clement length in y-direction for finite duierence «.alwlauom
- number of points in-the x direction '
~_ number.of points in-the 'y direction
-~ xindex value at the center

y index vidue at the center
square of DX

- sguare of DY o ’
- code to identily whether the A{:) A ncmmhzcd to A( l} or n@t .

coefficient Tor relaxstion operations
constani of integration In potential eqnnti@n .
counter, determined nunber-of miegratierw per serics

- sequence vade ta obtain another sries. cf ilaratioxtx S

printing code
sequence code to obiain anomu seties of § m. ,o:.xs‘
print coide, usad to file data or not '

- Dle contatning final values of potential function

file containing values of temperature distribution -

(The /otlowing syimbols sppear first in the strain program)

SYMBOLS
NLD
EPSXX{D)
EPSY V(1))

EPSXY(LJ)

DELX
DELY
£
DXY

MEANING

vatueys of potential function from S’O'lt 1L
stran in X dircction

- girain in ¥ direclion

shear strain
same 35 DX

same as DY

Young's modulus
oite hall product of DX and DY
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SYMBOLS

EPSXXF
EPSYYF
EPSXYF

MEANING
file containing values of strain in x direction
file containing values of struin in y direction
file containing values of shear strain

(The “ollowing symbols appear first in the stress progiam)

SYMBOLS

NXP

NYP
- NXI

NY1
NX2CH
 NYCH
SIGXX(1))
SIGYY(LD)
ALPHA
NXI

NY|

NX2

NY?2
CKVALL
CKVALZ
CTEMPTY
TEMPT?

MEANING

same as NX1 in potential program

same as NY 1 in potential program

value of x coordinate of the maximum stress in the x dxreutxm‘

value of y coordinate ot the maximum stress in the x direction

value of x coordinate of the maximum stress in the y direction

value of y coordinate of the maximum stress in the y direction

stress in the x direction

stress in the v direction

same as AL : :

dummy X coordinate jo compute location of maximum stress in x direction
dummy y coordinate to compute location of maximum stress in % direction
dummy x coordinate to compute location of maximum stress in v direction
dammy vy coordingte to compate location of maxifaum stress in y-ditection

_dummy variable to compute maximom stress in x direction

dummy variable vo vompaie maximum stress in v divection

temnperaturg at poing of maxbnum stres i direction

temperalure at ;mml of axsum stress in y direction

(The foﬂowm&. sy mhm appear fiest iny e shear prog ram)

SYMBOLS
SIGXYULDY

$X1
$Y1
CEVAL
L SXF
SYF

- MEANING

“shear stress
-durmny X coondingle to compute maxiniam diear stress

dummy v veordinate te vompute maximuen shear stress
dummy varable used o compute maxitpum shear stress
value of x voordinate of maxynum shear stress
vajne of ¥ coandinate of maxirun shear stross
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PETENTIAL

10 DIMENSIBN X(17),YC1TY,A(S)
20 DIMENSIGN P(17,17),POTCL 7,1 7¥,DIFCI?, )
3C DIMENSION TC17,17
40 DIMENSISBN TPCI7,17)
50 PEAL NU,MAX
60 PRINT," F@GR FREE TYPE |, FOR FIXED TYPE (%
70 READ,BOUAND
80 PRINT, **SUPPLY THE S COEFFITIENTS FOR T(X)."
90 PRINT-.
100 READ, A(l);A(E);ﬁ(S);A(&)aA(S)
110 PRINT,
120 PRINT,* SUPPLY CENTER TEMP., PAISSOAN'S RATIJ, COEF. BF THERMAL™
130 °R1NT;“ExPANSlBN; LENGTH IN X AND Y DIRECTIOGN, NUMBER @F“
140 PRINT,* INCREMENTS IN X AND Y DIRECTION.™
1S0 PRINT, ' '
160 READ, TC,NU,AL,XL,YL,NX,NY :
170 PRINT, *IF THE TEMPERATURE CBEFFICIENTS Y@U SUPPLIED VERE"
180 PRINT, “NORMALIZED TO CENTER TEMP, PRINT 1, IF NOGT., O%
120 DX =XL/NX ' ’ '
200 DY=YL/NY
210 NXI=NX+l .
220 NY!=NY+!
230 NXC= NX/2+1
200 NYCsNY/241
250 DX2=DXeDX
- 260 DV2=DY»DY
270 READ, NEB
280 C@=.443 _
290 1F CREB.EQ.O.) GO TG 9
DO.pA 10 K=1,5
J10 RIKIWATK)ITC
320 10 CBNTiINUE
330 9 PRINT,
[0 DE ¥ I=i,nXe
350 D@ 1 J=l,NVH
60 X1~ (XL/2.)ef1-120LX
370 YCJre=( YL/ ) e (W d=1 DY .
380 | CenTINUE
300 D@ 14 1=NXU,3X1
- 800 B8 18 J=RYC,NY
Q10 TULLII=ACT)I*A(2YeXITIAACII(N( )32 eACLI (X1 )wa]) -
LOE+A(S)I (X1 )eed)
- 430 Hx{2:NX(0)-J
330 TCl,M)eT(i,0)
U530 Kx(ReNY()=1]
' 480 T, =TI, !
. B | 470 TULMI=T(I,J)
4S80 TCJ,1)=TC(L, I
G900 TiML1i=:eT(R, U2
800 TCU.K¥=T(l,J)

s vt s e
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PATENTIAL  CONTINUED

519
520
530
540
550
56C
570
580
590

. 600

610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
8230
840
B50
860
870

TMKEY=T(i,d)

14 CONTINDE

IF{BBUND.FQ.0) GO T@& 738
TPC=~(AL*T(!;l)*(l.-NU))*CDYQ*DXQ/(Q.*(DX2+DYQ)))
G@ T 739 '

738 TPC=(AL*T (1, )% (1+NU))*%(DY2%DX2/(¢(2.%(DY2+DX2) )
739 CEBNTINUE

Pg 2 1=1,NX{

D@ 2 J=1,NY!
TP(I,J)=-(DX2%DVY2% (]« +NUY®ALKT(1,J3)/(2.%(DX2+DY2))
TPCILI)=TP(1,J)+TPC

PCI,J)=TP(1,J)

2 CONTINUE

15 CEONTINUE

IK=0

7 COANTINUE

MAX =u

675 CONTINUE

g 88 i=1,NX1

DB 88 J=1,NY!

IF(B@GUND.EQ.0) GO T@74l

POT(NX, Jy=AL*T(NX1,J)*Y{J)*Y(J) /2

Gg Ta 742

T41 POT(17,K)=0.

T2 CENTINUE

POTC1,Jd)=PAT(NXL,d)

POT(I,NY1)=PAT(NX1,J)

POT (i, 1)=PET{NX!,d)

88 CONTINUE

PBT(NXi,J)=0,.

DD=DX2/¢L2+%(DX2+0Y2))

DDY=DY2/ (2. % (DX2+DY2))

NXZ=NX«] ’

NY2=NY- |

Dg 20 I=2,NX2

DY 20 J=2,MY2 '
POTCI,Jim( DDY#(PAT(I-1,J)+PCI+1,J3) )+ (DD*(PAT¢I,J«})

8808+ 2 1,d+i 233 )+TRPILIL D)

890

- 900 |
0 POTINX,JI)={{DDYR(PBTINXE, JY+PATINX1, )Y+ (DD (PRT(NX,d~-1)+
L Q20ZP(MX. J+13)) )+ TPINX, J) |

20 CONTINUE
U9 24 J=82,NY2

930 24 CZNTINUE

- 940 DO 26 1=2,NX2

90 POTCILNY)Y=C(DDY®(POTCI,NY2)+PBTCILNY ) ) )+ (DDR(POTCI«1,NY)+
G60&PCI+I,NY I3+ TP(L,HNY)

970 26 CONTINUE _

960 POTI(NX.NY) = ({DDY%(PUT(NXZ,NY)+POTINX{,NY)))+

9208 (DDA (PBTINX, NY23+ PAT(NXLNY 1)) 3+ TPINX,NY)

100G D@ 49 I=},NXl

e IO R TR
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POTENTIAL C@NTINUED

1010 DB 49 J=1,NY!
1020 DIF(I, Jy=P@TCI,J)=P(1,d)
1030 PCI.dy=C1.+CBYPOTCI, J)-CO¥P(ILd)
1040 IF CABS((DIF(I1,J)/PBT(1,J)3*100.).LE.MAX) GB TE 49
1050 IF (PBT(I,J7.EQ.Q.)G8 T8 49
1060 MAX=ABS((DIF(I,J37PAT(I,J))*100)
1070 49 CE@NTINUE,
1080 FRINT 2001, IK,MAX,DlFxNXC;NYu)aPQT(NXC;NYC) PaTcN%s,vi>
1090 2001 FERMAT (3X,16,4E11+3) =
1100 PRINT, .. I
1110 IK=1Ket S -
1120 IFCIKWLE.20) G@ 167
1136 PRINT 2000, MAX

1140 PRINT,” SUPPLY STEP SIZE F@R PRINT STATEMENTS FOR x PWD J“’f_

1150 READ, INCRX, INCRY:

1160 2000 FORMAT(“THE MAX I MUM PERC“NTAGE DIYERENCE IS "aLIC 3y -

1170 PRINT,"IF M@RE ITERATIGNS ARE DESIRED TYPh 17 ,1F NQTMOf
1180 READ., TEST o

1160 IF.CTEST.EQ.0)GE T8 15

1200 38 CONTINUE . ' o
1210 PRINT,* IF @NLY THE QENTERLINE VALUBS ARE DESIRED TYPE ly"
1220 PRINT," @THERVISE TYPE ("

1230 READ,CHECK

1240 PRIRNT," X Y PET*
1250 IF(CHECK.EQ.l) G@ T@& 95 '

1260 D@ 78 I=1,NX1,INCRX

1270 D& 78 J=!,NY1, INCRY

1280 PRINT 79, X(I),Y(J),P(l.J)

1290 79 FORMAT (5X,F4.1,5X,F4.1,5X,212.5)
1300 78 C@NTINUE

1310 95 CONTINUE

1320 D@ 85 I1=1,NX1,INCRX

1330 PRINT 79,X(13,Y(NYC),PCILNYC)

1340 85 CONTINUE

1350 D@ 90 J=Il,NYl, INCRY

1360 PRINT 79,X(NXC),Y(JY-P(NXC,J)

1370 90 C@NTINUE

1386 PRINT 79;X(NXC);Y(NYC);P(NXC;NYC)
1390 PRINT, :

1400 PRINT, .

1410 PRINT,

1420 PRINT."IF AN@THER ITERATION IS DESIRED TYPE 03 GTHBRWISE X“ o

1430 READ,TEST2
1440 IF(TESTZ2.EQ.0) G& T@ 15

1450 PRINT, "IF IT 1S DESIRED T® WRITE INT@ A FILE, rvpﬁ.ié IF""‘

1460 PRINT, "N@Ts TYPE O. (THIS :§ F@R BOTH PGTFIL & TEMPF)".
1490 READ, DIRECT o - . 3 e

1480 IF (DIRECT.EQ.Q) GO T@ 71 ~ . = &7
1490 CALL OPERF (LWPOTFILMT) . © ~° © . =
1500 B TR XslNxl o

e



PETENTIAL CENTZNUED

i1si0
1520
1530

1540

1550
1560
1570
1580
1590
1600
1610
1620
1630
1640

165D

1660
- 1670

1680.

- 1690
"1700

D@ 72 J=Il,NYI

WRITE (1370) P(I,Jd) ; ST

70 FORMAT (E14.7)

72 CONTINUE

CALL OPENF (4,“TEMPF",7)
DB 3 X=1,NX!

D@ 3 L=l,NY1"

WVRITE (434) T(K,L)

4 FORMAT (F1S.5)

3 CONTINUE

71 CONTINUE

PRINT,

PRINT, * X Y CTEMPY

PRINT.

DE 5 I=1,NX1,INCRX R

D@ % J=1,NY1, INCRY.
PRINT 6, X(I),Y(J), T(I;J) :
6 FORMAT(3X,Fl4.1,5X,F4.1, SX;EIZ 5)

5 CONTINUVE
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90

REAL NT a _'f;ﬁw o
DIMENS ION P(!?;#?) o e
DIMENS 12N EPSXX(x7al7}:B? SYFCL 7,873
DIMENS 18N EPSXY(:T«!?):T'i?;!:) o
DIMENSIBN X(I17),YITy . -

PRINT, "SUPPLY YGUN(:S HEDULUQ,/PﬂlSSQN”S RAT!@, COEF.QF"
PRINT,;“THERMAL EXPANSIOH, (LEWGTH IN X AND Y DIRECTION,*
PRINT, "NUMBER ' 2F INCREMENTS IN X AND Y DIRECTION."™
RLAD»E;”&;ALJXL&YLJNXJNY

. 110 DELYaYL/NY - -
. 120 NX}i=NXéi

130 NYESNY+!

7 3140 GALL @PENF. (1, PETFILY,7)
150 CALL EFTST ¢1,M;

160 DB 2 I=1,NX!

170 D8 2 J=i, ¥yl :

180 READ (133) P(I.d)

§$0 3 FORMAT (E14.7)

200 2 CONTINUE

210 CALL @PENF (4,"TEMPF*“,7) -

220 CALL E@FTST (4,M)

230 D@ 57 I=1,NX!

. 240 Dy 57 J=1,NY!

250 READ (4359) T(1,J)

260 59 F@RMAT-(F15.5)

270 57 CONTINUE

280

PRINT,"PRINT | FOR FREE BOUNDARY, 0 FOR FIXED BOUNDARY."

290 DX2=aDELX*xDELX
300 DY2=DELY*DELY
310 DXY=DELX%DELY*.5
320 READ, BBUND

330 IF (B@GUND,EQ.!l) G& T@ 53
340 D@ 4 Ke=],NX!
350 D@ 4 L=1,NY!
360 EPSXX(K}])=00
370 EPSXX(l1,L)=0.
380 EPSXX(KsNY1)=0.
390 EPSXX(NX1,L)=0.
400 EPSYY(K, {)w0.
410 EPSYY(l,L)=0s
420 EPSYY (X, NY1)=Q.
430 EPSYY(NXi,L)=0,
440 EPSXY(K,1)=0,
450 EPSXY(!,L)=0.
460 EPSXY(K,NYi)=0.
470 EPSXY(NX1,L)=0.
480 4 CONTINUE

490 G& TO 54

500 53 CONTINUE
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STRAIN GONTINUED

510 DO 61 K=1,NXI |
520 DP 61 L=1,NY! o - I AL S e PN

530 - EPSXX (Ko 1 )®ALXTC(K, 1) -~ ~— 7~
S40 EPSXX(1,L)=AL%T(l,;L)

550 EPSXX{K,NX1)=AL%T(K,NX1)
560 EPSXX(NX1,L)Y=AL*T(NXi,L)
570 EPSYY (X, NX1)=AL*T(K,NX1?
580 EPSYY(l,L)=AL%T(l,L)

$90 EPSYY(NXI,L)®=AL®T(NX1,L)
600 EPSYY(17,K)=EPSXX(C17.K)
610 EPSXY(¢i1-.v=0.

620 EPSXY(NX!1,L)=0.

530 EPSAYV (K, 1)=0.

640 EPSXY(K,NX!)=0.
- 650 61 CONTINUE

660 S4 CUNTINUE

670 D2 § I=8,NX

680 D@ S J=2,NY

690 EPSXXCloJ)=(P(I+1,J)~2%P{I,J)+P(I~1,d))/(DELX%%2)
700 EPSYY(1,J)=(P(l,J+1)-2%P(I,J)+P(1,J~1))/(DELY%%2)
780 EPSXY(1,J)=(P(l,J)+P(I+1,J+1)=P(l,sJd+1)~P(I+1,J))/7DXY
720 S CONTINUE

730 NXC=NX/2+1

740 NYCsNY/2+1

750 PRINT 8,

760 D@ 13 K=l,NY!

780 Y(K)=((K=1)%DELY)>~(YL/2)

790 PRINT 9;x(NXC)oY(K)JEPSXX(NXCJK)JEPSYY(NXC:K))EPSXY(NXC»K)
800 13 CONTINUE

810 DO 12 Ks1,NXI

820 Y(K)=0.

830 X(K)=((K~1)%DELX)~(XL/2)

840 PRINT 9¢X(K):Y(NYC);EPSXX(K;NYC);EPSYY(K:NYG)aEPSXY(K:NYC)
850 12 CONTINU™

860 8 FORMAT(IX,"X",6X, Y%, 6X, "EPSXX", 6X, "EPSYY", 6X, "E?SX\"’ ?

870 9 FORMAT(IX,F4.1,3X,F4.1,3X,E10.3,2X,E10, 3;2X;ElO H

880 CALL PPENF (2,"EPSXXF", 7).
890 D@ (4 I=!,NX!

900 D@ 14 J=],NY!

910 WRITE (233) EPSXX(I,J)
920 14 CENTINUE

930 CALL SPENF (3:“EPSYYF":7)

940 DO 15 Iswi,NXT

930 D@ 15 J=nl,HYl

960 WRITE (333) EPSYY(Ii:d)

970" 1% CANTINVE - |

| 980 CALL.BPENF (S5, “EPSXYF",7)

990 D® 710 1wl,NXI o
1000 D8 710 Jwi, NYl .




STRAIN CONTINUED

1010 WRITE(5:3)EPSXY(1,4J)

1020 710 C@NTINUE

1030 PRINT,"EPSXX, EPSYY, AND EPSXY HAVE BEEN FILED*™
1040 6 CBNTINUE

1050 END

i
'
{
3
]
L4
:
i
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STRESS

i0
20
30
a0
50
60
70
80
90
100
110
120
130
140
150

160

i70
180
i90
200
2lo
220
- 830

240

250
260
270
280
- 290
300
30
320
30
340

REAL NU,NXiCH,NX2CH, NY1CH, NY2CH

DIMENS TG SrSXX(iTolT)SEPSYY(1T, 1T, T(17,17)
DIMENSION SIGXX(17,1T),SiCGYY(IT,1T

DIMENSIBN XC17),Y(1T)

PRINT,

PRINT,*" SUPPLY YBUNG*S MODULUS, POISSHN'S RATIZ, COEF."
PRINT,"8F THERMAL EXPANSION, LENGTH IN X AND Y DIRECTIZN,"™
PRINT, "NUMBER OF INCREMENTS IN X AND Y DIRECTIGN.%
READ, E, NU, ALPHA, XL, YL, NX, NY

DELX=XL /NX

DELY=YL/NY

NXP=NX+1

NYP=NY+ '

NXC=NX/2+!

NYC=NY/2+!

CALL BPENF (2,"EPSXXF*',7)

CALL E@FTST (2,N)

DB 10 I=i,NXP

Dé 10 Jeli,NYP

READ(2323)EPSXX(1,J)

23 FERMATCEL4LT)

10 CZNTINUE

CALL SPENF (3,"ETSYYF*, D)

CALL EGFTST (3.8

D@ 1S Is}l,NXP

‘D8 15 Je=l,NYP

READCIS2EPSYY (I, )

15 CBNTINUE

PRINT,

17 FORMAT (3X,"X",SX;“Y",6X;“TENP",6X;”SIGXX";6X;"SIGYY“
PRINT,

CALL BPENF (4:"TEMPF%,7)

CALL E@FTSTC(4A,ND '

D8 21 Jai,NXP

D8 21 Jd=1,NYP

READ ¢A322) TILL)

28 FORMAY (Fl8.%5)

21 C@NTINUE

LOFGRMATCIXLFQe 1, X, FAe1,6X,FTe 1, SXaElO 3:33;510 J)
PRINT, ‘

PR 16 1=),NXP

DA 16 J=1,NYP
SIGXX(!;J)"E&(EPSXX(I:J)éNU#(EPSVY(Iodﬁ) (l*NU)*ALPRA#T

4&0&( o)) /7 ¢ ~NU%%2)

450

S!GYY(!:J)GE#(EPSYY(I;J)GNU#(EPSXX(I:J)) (l#NU)‘ALPRA*T

0L C1,J)) /(1 ~NU%22)

470
486
490
S00

16 CINTINUE

PRINT,"S518XX AND SICYY BAVE BEEN CONPUTED.™
PRINT, -
PRINT 17,
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STRESS CBNTINUED

Si0
520
5830
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
mo
710
720
730
740

750
760.

770

$70

PRINT,

DB S7 I=1,NXP

D@ 57 J=1,NYP

X(I)»(l=~])*DELX=(XL/2.)
Y(J)={J=~1)%DELY=(YL/2:)

87 CﬁNTINUE

D@ . K=1,NYP
PRINT«.iX(NXG)oY(K)JT(NXC:K)JSIGXX(NXCJK)oSIGYYCNXCaK)
18 CENTINUE

DO 20 Ka], NXP

PRINT19,X(K), Y(NYC), T(K,NYC), SIGXX(K,NYCY, SIGYY(K.NYC)
20 QﬂNTINUE

NX1=}

NYl=1

NX2=}1

NY2=1

CKVAL1=0.

CHVAL2=2Q.

D@ .29 Iu],NXP

D@ 29 J=}i,NYP

IF (AHS(SIGXX(:;J)).LE CKVALl) G8 TO 30
CKVALI=ABS{S1GXX(1,J)?

NX1ng

NYl=d

30 CONYTINUE

IF (ABS(SIGYY(IaJ)).LS.GRVALE) G8 TO 31
CKVAL2wABS(SIGYY(1,J)) :

NX2=1

NY2=J

a1 G@NTINUE

29 CENTINUE

) PRINT,
PRINT, "MAXINUM VALUES FOR STRESS ARE:®
PRINT, . '
PRINT, * X ¥ S16XX s:sw  TEMP™
PRINT, : «

?EHPTI&T(NXS NY1?»

TEMPT2=T (NX2, NY2)

NX1CH= ¢ (NX1 <] )$DELX )« (XL/24)

NY{CH= (¢NY1~1)*DELY)«(YL/24)
NZL2CH= ( (NX2~1)%DELX) - (XL/2.)
NY2CH= ( (NY2-) )%DELY )= (YL/24)

PLINT 32, NXICH,NYICH, SIGXXCNXI,NY1),SIGYY(NXI,NY1),TEMPT]

PRINT 32, NX2CH,NY2CH,SIGXXCNX2,NY2), S1GYYINXR,NY2),TENPTE

j 32 FORMAT (lx,ra.!.ax,ta.x.ax,310.3,2x,3!0~3;2x,F611)

28 CONTINUE
En
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140
IS0
160
i70
180
190
200
210
220
230
240
250
260

270

280

310

SHEAR

DIMENSI@N EPSXY(17,173,S1GXY¢17,173,XC172,Y 1)
INTEGER SX1,SY!

REAL NU

PRINT,"SUPPLY E,
PRINT,"DIRECTIGNS,

READ, E;NU#NX,NY;XL;YL

NX1=NX+1
NYi= NY+!

NXC=NX/2+1
NYC=NY/2+1

DX =XL/NX
DY=YL/NY

PRINT

201 FORMAT(EX,"X",9X. "Y",SAA"STRAEN”;&X;”SQL&R"

201,

CALL BPENF(5,"EPSXYF", T}

CALL EGFTST(S:N)

BRE/ (2% (1o +NU¥

Dg 19
Dg 19

f=l,NXi
J= i NY!

READ (5;23) EPSXY(I,d)

23 FRRMAT(Ei#.7)

SIGXY ¢, J)nﬁﬁﬁFSXY(i;d)
19 CeNTINUE

Dg 2%

T=1,N%1

X{I= {(I‘!N*DX}*(XL/Q 3
21 CBNTINUE '

Dy 22

Ju ks NY!

22 CBNTINUE

PRINT, “SUPPLY PRINT IMCRaﬁEMT FOR X ANQ Y“

R EIA nj

PRINT QDD,AiﬁXC)»Y(K);EPQX?iNKC KD 516¥ ycuxc,k> o

WYL (g D RDY Y (YLAR )

INCRY, INCRY
Df 27 E=i,NY1,INCRY

27 CONTINUE
DO 29 Kel,NXI, JNIRX

PRXNI 230#:{{}{‘;?(”&'%)} h?é:)(‘:’{ﬁ: tﬁ&): SXBWQKJWQ}

29 SORTINUE.

200 Fﬁﬁﬁﬁ7(3kw?? B:JX;FV 2,3X:EL003, IXLEIG.D)

aXi=1.

‘Sti=t,

CWAL‘QD .

D@ 290
DO 290

IF(QBS(SIuXYCI;J)):LE«CKV&L) Ge T8 30

T=1,0¥%1
Jul,NY!

CHUAL=ABS(SIGXY (L,

SXiel
SYlwy)

30 CONTINUE
290 CeMYTINUE
SXFa2((SX1=1.)&DX)=-(XL/24)

NU, THE NUMBER @F FNCREMENTS IN THE X AND v*. =
AND PANEL LENGTH ALGNG X AND Y™

LB APt e 8 55 S S 2 PN £ L et

A R

%4
des

SR R

B %Y A

4

X =




SHEAR CONTINUED

510 SYF=((SYl~-1.)%DY)-(YL/2.)
520 PRINT 270,

S30 270 FORMAT(3X,"X", 7X,"Y",2X,'" MAX SHEAR | MAX STRESS™)
40 PRINT271, SXF, SYF,EPSXY(SX1,8Y1),SIGXY(5Xi,S8Y!)

550 27! FORMAT(IX,FaelsIX,oFA401,3X5E10.3,3X,E10.3)
560 END

Lonnrrs + A Ay b

132
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